TY - JOUR
T1 - Determining when a fracture occurred
T2 - Does the method matter? Analysis of the similarity of three different methods for estimating time since fracture of juvenile long bones
AU - Drury, Anne
AU - Cunningham, Craig
N1 - No funding info
PY - 2018/1
Y1 - 2018/1
N2 - Radiographic fracture date estimation is a critical component of skeletal trauma analysis in the living. Several timetables have been proposed for how the appearance of radiographic features can be interpreted to provide a likely time frame for fracture occurrence. This study compares three such timetables for pediatric fractures, by Islam et al. (2000), Malone et al. (2011), and Prosser et al. (2012), in order to determine whether the fracture date ranges produced by using these methods are in agreement with one another. Fracture date ranges were estimated for 112 long bone fractures in 96 children aged 1-17 years, using the three different timetables. The extent of similarity of the intervals was tested by statistically comparing the overlap between the ranges. Results showed that none of the methods were in perfect agreement with one another. Differences seen included the size of the estimated date range for when a fracture occurred, and the specific dates given for both the upper and lower ends of the fracture date range. There was greater similarity between the ranges produced by Malone et al. (2011) and both the other two studies than there was between Islam et al. (2000) and Prosser et al. (2012). The greatest similarity existed between Malone et al. (2011) and Islam et al. (2000). The extent of differences between methods can vary widely, depending on the fracture analysed. Using one timetable gives an average earliest possible fracture date of less than 2 days before another, but the range was extreme, with one method estimating minimum time since fracture as 25 days before another method for a given fracture. In most cases, one method gave maximum time since fracture as a week less than the other two methods, but range was extreme and some estimates were nearly two months different. The variability in fracture date estimates given by these timetables indicates that caution should be exercised when estimating the timing of a juvenile fracture if relying solely on one of the published guides. Future research should be undertaken to compare these methods on a population of known fracture timing, and to better understand the relationship between age of the individual, skeletal health, fracture healing rates, and radiographic characteristics of fracture healing.
AB - Radiographic fracture date estimation is a critical component of skeletal trauma analysis in the living. Several timetables have been proposed for how the appearance of radiographic features can be interpreted to provide a likely time frame for fracture occurrence. This study compares three such timetables for pediatric fractures, by Islam et al. (2000), Malone et al. (2011), and Prosser et al. (2012), in order to determine whether the fracture date ranges produced by using these methods are in agreement with one another. Fracture date ranges were estimated for 112 long bone fractures in 96 children aged 1-17 years, using the three different timetables. The extent of similarity of the intervals was tested by statistically comparing the overlap between the ranges. Results showed that none of the methods were in perfect agreement with one another. Differences seen included the size of the estimated date range for when a fracture occurred, and the specific dates given for both the upper and lower ends of the fracture date range. There was greater similarity between the ranges produced by Malone et al. (2011) and both the other two studies than there was between Islam et al. (2000) and Prosser et al. (2012). The greatest similarity existed between Malone et al. (2011) and Islam et al. (2000). The extent of differences between methods can vary widely, depending on the fracture analysed. Using one timetable gives an average earliest possible fracture date of less than 2 days before another, but the range was extreme, with one method estimating minimum time since fracture as 25 days before another method for a given fracture. In most cases, one method gave maximum time since fracture as a week less than the other two methods, but range was extreme and some estimates were nearly two months different. The variability in fracture date estimates given by these timetables indicates that caution should be exercised when estimating the timing of a juvenile fracture if relying solely on one of the published guides. Future research should be undertaken to compare these methods on a population of known fracture timing, and to better understand the relationship between age of the individual, skeletal health, fracture healing rates, and radiographic characteristics of fracture healing.
KW - Fracture date
KW - Fracture healing
KW - Fracture timing
KW - Healing timelines
KW - Juvenile fractures
KW - Methodology comparison
UR - http://www.scopus.com/inward/record.url?scp=85037700437&partnerID=8YFLogxK
U2 - 10.1016/j.jflm.2017.11.004
DO - 10.1016/j.jflm.2017.11.004
M3 - Article
C2 - 29227827
VL - 53
SP - 97
EP - 105
JO - Journal of Forensic and Legal Medicine
JF - Journal of Forensic and Legal Medicine
SN - 1752-928X
ER -