TY - JOUR
T1 - Development of a high-throughput SNP array for sea cucumber (Apostichopus japonicus) and its application in genomic selection with MCP regularized deep neural networks
AU - Lv, Jia
AU - Wang, Yangfan
AU - Ni, Ping
AU - Lin, Ping
AU - Hou, Hu
AU - Ding, Jun
AU - Chang, Yaqing
AU - Hu, Jingjie
AU - Wang, Shi
AU - Bao, Zhenmin
N1 - Funding Information:
We acknowledge the grant support from the National Key Research and Development Program of China (2018YFD0901601), National Natural Science Foundation of China (32072976, 32102778),and Sanya Yazhou Bay Science and Technology City Management Foundation (SKJC-KJ-2019KY01).
Copyright:
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).
PY - 2022/7
Y1 - 2022/7
N2 - High-throughput single nucleotide polymorphism (SNP) genotyping assays are powerful tools for genetic studies and genomic breeding applications for many species. Though large numbers of SNPs have been identified in sea cucumber (Apostichopus japonicus), but, as yet, no high-throughput genotyping platform is available for this species. In this study, we designed and developed a high-throughput 24 K SNP genotyping array named HaishenSNP24K for A. japonicus, based on the multi-objective-local optimization (MOLO) algorithm and HD-Marker genotyping method. The SNP array exhibited a relatively high genotyping call rate (> 96%), genotyping accuracy (>95%) and exhibited highly polymorphic in sea cucumber populations. In addition, we also assessed its application in genomic selection (GS). Deep neural networks (DNN) that can capture the complicated interactions of genes have been proposed as a promising tool in GS for SNP-based genomic prediction of complex traits in animal breeding. To overcome the problem of over-fitting when using the HaishenSNP24K array as high-dimensional DNN input, we developed minmax concave penalty (MCP) regularization for sparse deep neural networks (DNN-MCP) that finds an optimal sparse structure of a DNN by minimizing the square error subject to the non-convex penalty MCP on the parameters (weights and biases). Compared to two linear models, namely RR-GBLUP and Bayes B, and the nonlinear model DNN, DNN-MCP has greatly improved the genomic prediction ability for three quantitative traits (e.g., wet weight, dry weight and survival time) in the sea cucumber population. To the best of our knowledge, this is the first work to develop a high-throughput SNP array for A. japonicus and a new model DNN-MCP for genomic prediction of complex traits in GS. The present results provide evidence that supports the HaishenSNP24K array with DNN-MCP will be valuable for genetic studies and molecular breeding in A. japonicus.
AB - High-throughput single nucleotide polymorphism (SNP) genotyping assays are powerful tools for genetic studies and genomic breeding applications for many species. Though large numbers of SNPs have been identified in sea cucumber (Apostichopus japonicus), but, as yet, no high-throughput genotyping platform is available for this species. In this study, we designed and developed a high-throughput 24 K SNP genotyping array named HaishenSNP24K for A. japonicus, based on the multi-objective-local optimization (MOLO) algorithm and HD-Marker genotyping method. The SNP array exhibited a relatively high genotyping call rate (> 96%), genotyping accuracy (>95%) and exhibited highly polymorphic in sea cucumber populations. In addition, we also assessed its application in genomic selection (GS). Deep neural networks (DNN) that can capture the complicated interactions of genes have been proposed as a promising tool in GS for SNP-based genomic prediction of complex traits in animal breeding. To overcome the problem of over-fitting when using the HaishenSNP24K array as high-dimensional DNN input, we developed minmax concave penalty (MCP) regularization for sparse deep neural networks (DNN-MCP) that finds an optimal sparse structure of a DNN by minimizing the square error subject to the non-convex penalty MCP on the parameters (weights and biases). Compared to two linear models, namely RR-GBLUP and Bayes B, and the nonlinear model DNN, DNN-MCP has greatly improved the genomic prediction ability for three quantitative traits (e.g., wet weight, dry weight and survival time) in the sea cucumber population. To the best of our knowledge, this is the first work to develop a high-throughput SNP array for A. japonicus and a new model DNN-MCP for genomic prediction of complex traits in GS. The present results provide evidence that supports the HaishenSNP24K array with DNN-MCP will be valuable for genetic studies and molecular breeding in A. japonicus.
KW - SNP Array
KW - Sea cucumber
KW - Molecular breeding
KW - Genomic selection
KW - MCP
KW - Deep neural networks
UR - http://www.scopus.com/inward/record.url?scp=85134774251&partnerID=8YFLogxK
U2 - 10.1016/j.ygeno.2022.110426
DO - 10.1016/j.ygeno.2022.110426
M3 - Article
C2 - 35820495
SN - 1471-2164
VL - 114
JO - Genomics
JF - Genomics
IS - 4
M1 - 110426
ER -