TY - JOUR
T1 - Development of a morphing technique for predicting the position and size of an artificial ear in hemifacial microsomia patients.
AU - Coward, Trevor J.
AU - Richards, Robin
AU - Scott, Brendan J. J.
PY - 2014/9
Y1 - 2014/9
N2 - People with hemifacial microsomia may be missing an ear on the affected side of the face. The principal aim of the study was to develop a morphing technique and to determine whether it could be used to appropriately position an artificial ear, as well as to give an indication of prosthesis size in comparison with the natural ear. Comparisons also were made between the artificial ears being worn by the patients with their natural ears. Data from stereophotogrammetry images of the faces of 10 people were converted into stereolithographic format. Anthropometric points on the face and ear of the unaffected side were plotted. By a process of scaling, the distance between facial landmarks on the unaffected side was estimated for the affected side so as to identify where the morphed ear would be positioned once generated. Generally, the morphed ears appeared to be in acceptable positions. There was a statistically significant difference between the position of the morphed and natural ears (P = .011), as well as the artificial and natural ears (P = .001), but this was unlikely to have any clinical implications. There were no significant differences among the sizes of the natural, morphed, and artificial ears (P = .072). Morphing appears to offer a more precise way of planning the positioning and construction of an artificial ear on patients with hemifacial microsomia than traditional methods. Differences in facial shape on either side of the face may impact on the process. This requires further study.
AB - People with hemifacial microsomia may be missing an ear on the affected side of the face. The principal aim of the study was to develop a morphing technique and to determine whether it could be used to appropriately position an artificial ear, as well as to give an indication of prosthesis size in comparison with the natural ear. Comparisons also were made between the artificial ears being worn by the patients with their natural ears. Data from stereophotogrammetry images of the faces of 10 people were converted into stereolithographic format. Anthropometric points on the face and ear of the unaffected side were plotted. By a process of scaling, the distance between facial landmarks on the unaffected side was estimated for the affected side so as to identify where the morphed ear would be positioned once generated. Generally, the morphed ears appeared to be in acceptable positions. There was a statistically significant difference between the position of the morphed and natural ears (P = .011), as well as the artificial and natural ears (P = .001), but this was unlikely to have any clinical implications. There were no significant differences among the sizes of the natural, morphed, and artificial ears (P = .072). Morphing appears to offer a more precise way of planning the positioning and construction of an artificial ear on patients with hemifacial microsomia than traditional methods. Differences in facial shape on either side of the face may impact on the process. This requires further study.
UR - http://www.scopus.com/inward/record.url?scp=84908509080&partnerID=8YFLogxK
U2 - 10.11607/ijp.3990
DO - 10.11607/ijp.3990
M3 - Article
C2 - 25191888
AN - SCOPUS:84908509080
SN - 0893-2174
VL - 27
SP - 451
EP - 457
JO - International Journal of Prosthodontics
JF - International Journal of Prosthodontics
IS - 5
ER -