Development of new FRP reinforcement for optimized concrete structures

Saverio Spadea, John Orr, Tim Ibell, Antonio Nanni

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

With the goal of achieving sustainable design, being able to combine optimized geometries with durable construction materials is a major challenge for Civil Engineering. Recent research at the University of Bath has demonstrated that fibre-reinforced polymers (FRP) can be woven into geometrically appropriate cages for the reinforcement of optimised concrete beams. This innovative construction method enables the replacement of conventional steel with non-corrosive reinforcement that can provide the required strength exactly where needed. The manufacturing of the reinforcement is achieved by means of an automated process based on a filament winding technique. Being extremely lightweight, the wound-FRP (WFRP) cages are well suited to speeding up construction processes, as they can be delivered on site ready to be cast. In this paper, the results of flexural tests on optimised full-scale flexibly formed concrete elements are reported and discussed. Two different case studies are taken in consideration: - A structurally optimized joist supporting a lightweight floor; - A structurally optimized beam with an in-situ casting of a concrete floor. The optimization objective is to obtain the minimal mass of concrete required to achieve the structural capacity design requirements from widely recognized design codes. The experimental results demonstrate the reliability of the technical solution proposed and provide the basis of a new concept for sustainable and durable reinforced concrete structures.

Original languageEnglish
Title of host publicationHigh Tech Concrete: Where Technology and Engineering Meet
Subtitle of host publicationProceedings of the 2017 fib Symposium
EditorsD. A. Hordijk, M. Luković
Place of PublicationSwitzerland
PublisherSpringer International Publishing
Pages867-876
Number of pages10
ISBN (Electronic)9783319594712
ISBN (Print)9783319594705
DOIs
Publication statusPublished - 2018
Event2017 fib Symposium - High Tech Concrete: Where Technology and Engineering Meet - Maastricht, Netherlands
Duration: 12 Jun 201714 Jun 2017

Conference

Conference2017 fib Symposium - High Tech Concrete: Where Technology and Engineering Meet
CountryNetherlands
CityMaastricht
Period12/06/1714/06/17

Keywords

  • Composites
  • Fabric formworks
  • Optimisation
  • Reinforced concrete
  • WFRP

Fingerprint Dive into the research topics of 'Development of new FRP reinforcement for optimized concrete structures'. Together they form a unique fingerprint.

Cite this