TY - JOUR
T1 - Differential subcellular localization of RIC-3 Isoforms and their role in determining 5-HT3 receptor composition
AU - Cheng, Aixin
AU - Bollan, Karen A.
AU - Greenwood, Sam M.
AU - Irving, Andrew J.
AU - Connolly, Christopher N.
PY - 2007/9/7
Y1 - 2007/9/7
N2 - RIC-3 has been identified as a chaperone molecule involved in promoting the functional expression of nicotinic acetylcholine and 5-HT3 receptors in mammalian cells. In this study, we examined the effects of RIC-3a ( isoform a) and a truncated isoform ( isoform d) on RIC-3 localization, mobility, and aggregation and its effect on 5-HT3 receptor composition in mammalian cells. Human RIC-3a possesses an amino-terminal signal sequence that targets it to the endoplasmic reticulum where it is distributed within the reticular network, often forming large diffuse "slicks" and bright "halo" structures. RIC-3a is highly mobile within and between these compartments. Despite the propensity for RIC-3a to aggregate, its expression enhances the level of surface 5-HT3A (homomeric) receptors. In contrast, RIC-3a exerts an inhibitory action on the surface expression of heteromeric 5-HT3A/B receptors. RIC-3d exhibits an altered subcellular distribution, being localized to the endoplasmic reticulum, large diffuse slicks, tubulo-vesicular structures, and the Golgi. Bidirectional trafficking between the endoplasmic reticulum and Golgi suggests that RIC-3d constitutively cycles between these two compartments. In support of the large coiled-coil domain of RIC-3a being responsible for protein aggregation, RIC-3d, lacking this cytoplasmic domain, does not aggregate or induce the formation of bright aggregates. Regardless of these differences, isoform d is still capable of enhancing homomeric, and inhibiting heteromeric, 5-HT3 receptor expression. Thus, both isoforms of RIC-3 play a role in determining 5-HT3 receptor composition.
AB - RIC-3 has been identified as a chaperone molecule involved in promoting the functional expression of nicotinic acetylcholine and 5-HT3 receptors in mammalian cells. In this study, we examined the effects of RIC-3a ( isoform a) and a truncated isoform ( isoform d) on RIC-3 localization, mobility, and aggregation and its effect on 5-HT3 receptor composition in mammalian cells. Human RIC-3a possesses an amino-terminal signal sequence that targets it to the endoplasmic reticulum where it is distributed within the reticular network, often forming large diffuse "slicks" and bright "halo" structures. RIC-3a is highly mobile within and between these compartments. Despite the propensity for RIC-3a to aggregate, its expression enhances the level of surface 5-HT3A (homomeric) receptors. In contrast, RIC-3a exerts an inhibitory action on the surface expression of heteromeric 5-HT3A/B receptors. RIC-3d exhibits an altered subcellular distribution, being localized to the endoplasmic reticulum, large diffuse slicks, tubulo-vesicular structures, and the Golgi. Bidirectional trafficking between the endoplasmic reticulum and Golgi suggests that RIC-3d constitutively cycles between these two compartments. In support of the large coiled-coil domain of RIC-3a being responsible for protein aggregation, RIC-3d, lacking this cytoplasmic domain, does not aggregate or induce the formation of bright aggregates. Regardless of these differences, isoform d is still capable of enhancing homomeric, and inhibiting heteromeric, 5-HT3 receptor expression. Thus, both isoforms of RIC-3 play a role in determining 5-HT3 receptor composition.
U2 - 10.1074/jbc.M703899200
DO - 10.1074/jbc.M703899200
M3 - Article
C2 - 17609200
SN - 0021-9258
VL - 282
SP - 26158
EP - 26166
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 36
ER -