TY - JOUR
T1 - Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a "tethering" mechanism
T2 - a two-site interaction model for the Nrf2-Keap1 complex
AU - McMahon, Michael
AU - Thomas, Nerys
AU - Itoh, Ken
AU - Yamamoto, Masayuki
AU - Hayes, John D.
PY - 2006
Y1 - 2006
N2 - The prevalence and mechanistic significance of self-association among substrate adaptors for the Cul-Rbx family of ubiquitin ligases remain unclear. We now report that it is as a homodimer that the substrate adaptor Keap1 interacts with Cul3. The resulting complex facilitates ubiquitylation of the Nrf2 transcription factor but only when this substrate possesses within its Neh2 domain a second cryptic Keap1-binding site, the DLG motif, in addition to its previously described ETGE site. Both motifs recognize overlapping surfaces on Keap1, and the seven lysine residues of Nrf2 that act as ubiquitin acceptors lie between them. Based on these data, we propose a "fixed-ends" model for Nrf2 ubiquitylation in which each binding site becomes tethered to a separate subunit of the Keap1 homodimer. This two-site interaction between Keap1 and Nrf2 constrains the mobility of the target lysine residues in the Neh2 domain, increasing their average concentration in the vicinity of the Rbx-bound ubiquitin-conjugating enzyme, and thus the rate at which the transcription factor is ubiquitylated. We show that self-association is a general feature of Cul3 substrate adaptors and propose that the fixed-ends mechanism is commonly utilized to recruit, orientate, and ubiquitylate substrates upon this family of ubiquitin ligases.
AB - The prevalence and mechanistic significance of self-association among substrate adaptors for the Cul-Rbx family of ubiquitin ligases remain unclear. We now report that it is as a homodimer that the substrate adaptor Keap1 interacts with Cul3. The resulting complex facilitates ubiquitylation of the Nrf2 transcription factor but only when this substrate possesses within its Neh2 domain a second cryptic Keap1-binding site, the DLG motif, in addition to its previously described ETGE site. Both motifs recognize overlapping surfaces on Keap1, and the seven lysine residues of Nrf2 that act as ubiquitin acceptors lie between them. Based on these data, we propose a "fixed-ends" model for Nrf2 ubiquitylation in which each binding site becomes tethered to a separate subunit of the Keap1 homodimer. This two-site interaction between Keap1 and Nrf2 constrains the mobility of the target lysine residues in the Neh2 domain, increasing their average concentration in the vicinity of the Rbx-bound ubiquitin-conjugating enzyme, and thus the rate at which the transcription factor is ubiquitylated. We show that self-association is a general feature of Cul3 substrate adaptors and propose that the fixed-ends mechanism is commonly utilized to recruit, orientate, and ubiquitylate substrates upon this family of ubiquitin ligases.
U2 - 10.1074/jbc.M601119200
DO - 10.1074/jbc.M601119200
M3 - Article
C2 - 16790436
SN - 0021-9258
VL - 281
SP - 24756
EP - 24768
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 34
ER -