Abstract
Optical projection tomography enables 3-D imaging of colorectal polyps at resolutions of 5-10 μm. This paper investigates the ability of image analysis based on 3-D texture features to discriminate diagnostic levels of dysplastic change from such images, specifically, low-grade dysplasia, high-grade dysplasia and invasive cancer. We build a patch-based recognition system and evaluate both multi-class classification and ordinal regression formulations on a 90 polyp dataset. 3-D texture representations computed with a handcrafted feature extractor, random projection, and unsupervised image filter learning are compared using a bag-of-words framework. We measure performance in terms of error rates, F-measures, and ROC surfaces. Results demonstrate that randomly projected features are effective. Discrimination was improved by carefully manipulating various important aspects of the system, including class balancing, output calibration and approximation of non-linear kernels.
Original language | English |
---|---|
Pages (from-to) | 57-69 |
Number of pages | 13 |
Journal | Medical Image Analysis |
Volume | 26 |
Issue number | 1 |
Early online date | 20 Aug 2015 |
DOIs | |
Publication status | Published - Dec 2015 |
Keywords
- Volumetric texture
- Optical projection tomography
- 3-D histopathology
- colorectal polypoid cancer
Fingerprint
Dive into the research topics of 'Discriminating dysplasia: optical tomographic texture analysis of colorectal polyps'. Together they form a unique fingerprint.Student theses
-
Analysis of Colorectal Polyps in Optical Projection Tomography
Li, W. (Author), Zhang, J. (Supervisor) & McKenna, S. (Supervisor), 2015Student thesis: Doctoral Thesis › Doctor of Philosophy
File