Abstract
Escherichia coli can perform at least two modes of anaerobic hydrogen metabolism and expresses at least two types of hydrogenase activity. Respiratory hydrogen oxidation is catalysed by two 'uptake' hydrogenase isoenzymes, hydrogenase -1 and -2 (Hyd-1 and -2), and fermentative hydrogen production is catalysed by Hyd-3. Harnessing and enhancing the metabolic capability of E. coli to perform anaerobic mixed-acid fermentation is therefore an attractive approach for bio-hydrogen production from sugars. In this work, the effects of genetic modification of the genes encoding the uptake hydrogenases, as well as the importance of preculture conditions, on hydrogen production and fermentation balance were examined. In suspensions of resting cells pregrown aerobically with formate, deletions in Hyd-3 abolished hydrogen production, whereas the deletion of both uptake hydrogenases improved hydrogen production by 37% over the parent strain. Under fermentative conditions, respiratory H-2 uptake activity was absent in strains lacking Hyd-2. The effect of a deletion in hycA on H-2 production was found to be dependent upon environmental conditions, but H-2 uptake was not significantly affected by this mutation.
Original language | English |
---|---|
Pages (from-to) | 48-55 |
Number of pages | 8 |
Journal | FEMS Microbiology Letters |
Volume | 278 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2008 |
Keywords
- biohydrogen
- Escherichia coli
- hydrogenases
- FERMENTATIVE LACTATE-DEHYDROGENASE
- SEC-INDEPENDENT PROTEIN
- RHODOBACTER-CAPSULATUS
- MUTATIONAL ANALYSIS
- FORMIC-ACID
- FORMATE
- STRAINS
- MUTANT
- EXPRESSION
- GLUCOSE