Abstract
Gene expression in eukaryotic cells is profoundly influenced by the post-transcriptional processing of mRNAs, including the splicing of introns in the nucleus and both nuclear and cytoplasmic degradation pathways. These processes have the potential to affect both the steady-state levels and the kinetics of changes to levels of intron-containing transcripts. Here we report the use of a splicing isoform-specific microarray platform to investigate the effects of diverse stress conditions on pre-mRNA processing. Interestingly, we find that diverse stresses cause distinct patterns of changes at this level. The responses we observed are most dramatic for the RPGs and can be categorized into three major classes. The first is characterized by accumulation of RPG pre-mRNA and is seen in multiple types of amino acid starvation regimes; the magnitude of splicing inhibition correlates with the severity of the stress. The second class is characterized by a rapid decrease in both pre- and mature RPG mRNA and is seen in many stresses that inactivate the TORC1 kinase complex. These decreases depend on nuclear turnover of the intron-containing pre-RNAs. The third class is characterized by a decrease in RPG pre-mRNA, with only a modest reduction in the mature species; this response is observed in hyperosmotic and cation-toxic stresses. We show that casein kinase 2 (CK2) makes important contributions to the changes in pre-mRNA processing, particularly for the first two classes of stress responses. In total, our data suggest that complex post-transcriptional programs cooperate to fine-tune expression of intron-containing transcripts in budding yeast. Published by Cold Spring Harbor Laboratory Press.
Original language | English |
---|---|
Pages (from-to) | 1461-1478 |
Number of pages | 18 |
Journal | RNA |
Volume | 17 |
Issue number | 8 |
Early online date | 22 Jun 2011 |
DOIs | |
Publication status | Published - Aug 2011 |
Keywords
- Budding yeast
- Casein kinase 2
- Gene expression
- Pre-mRNA processing
- Splicing
- Stress responses
ASJC Scopus subject areas
- Molecular Biology