Effects of Liraglutide and Fenretinide treatments on the diabetic phenotype of neuronal human BACE1 knock-in mice

Ruta Dekeryte, Claire Hull, Kaja Plucinska, Shakil Khan, Sarah Kamli-Salino, Nimesh Mody, Nicola Morrice, Chris McLaughlin, Victor Gault, Bettina Platt, Mirela Delibegovic

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)
72 Downloads (Pure)


We recently reported that brain-specific human β-secretase 1 (BACE1) knock-in (PLB4), a mouse model of sporadic Alzheimer's disease (AD), also develops a severe diabetic phenotype characterised by impaired glucose homeostasis, decreased insulin sensitivity and a fatty liver phenotype. Hence, we here aimed to assess if targeted anti-diabetic therapies (Liraglutide and Fenretinide) would attenuate the diabetic and behavioural phenotype of these mice. PLB4 mice and wild-type (WT) controls were administered Liraglutide or Fenretinide for ten consecutive weeks alongside vehicle-treated mice. Physiological (body weight and mass composition, glucose tolerance, serum hormone concentration), behavioural (locomotor activity) and molecular assessments were performed in mice pre- and post-treatment. Liraglutide and Fenretinide treatments inhibited adiposity gain and decreased circulating serum triglyceride (with Liraglutide) and leptin (with Fenretinide) levels in PLB4 mice. We also found that PLB4 mice exhibited increased levels of serum dipeptidyl peptidase 4 (DPP4), together with up-regulated hepatic expression of Dpp4, retinol binding protein 4 (Rbp4) and sterol regulatory element-binding 1c (Srebp1c), which was normalised by both treatments. Interestingly, Liraglutide treatment slowed down habituation to a novel environment and increased secondary night activity peak in WT mice, suggesting an impact on circadian activity regulation. However, neither treatment improved glucose homeostasis in PLB4 mice, implying that impaired glucose metabolism in this genotype may not be associated with glucagon like peptide 1 (GLP-1) and/or RBP4-mediated pathways. In summary, this study provides new insights into molecular mechanisms underlying neuronal BACE1-mediated metabolic regulation and implicates BACE1 as a putative regulator of systemic DPP4 levels.

Original languageEnglish
Pages (from-to)222-230
Number of pages9
JournalBiochemical Pharmacology
Early online date16 May 2019
Publication statusPublished - 1 Aug 2019


  • BACE1
  • DPP4
  • Insulin resistance
  • Liraglutide
  • Type 2 diabetes

ASJC Scopus subject areas

  • Biochemistry
  • Pharmacology


Dive into the research topics of 'Effects of Liraglutide and Fenretinide treatments on the diabetic phenotype of neuronal human BACE1 knock-in mice'. Together they form a unique fingerprint.

Cite this