Electrophysiology Measurements of Metal Transport by MntH2 from Enterococcus faecalis

Matthias Gantner, Theodoros Laftsoglou, Honglin Rong, Vincent L. G. Postis, Lars J. C. Jeuken (Lead / Corresponding author)

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Transition metals are essential trace elements and their high-affinity uptake is required for many organisms. Metal transporters are often characterised using metal-sensitive fluorescent
dyes, limiting the metals and experimental conditions that can be studied. Here, we have tested whether metal transport by Enterococcus faecalis MntH2 can be measured with an electrophysiology method that is based on the solid-supported membrane technology. E. faecalis MntH2 belongs to the Natural Resistance-Associated Macrophage Protein (Nramp) family of proton-coupled transporters, which transport divalent transition metals and do not transport the earth metals. Electrophysiology confirms transport of Mn(II), Co(II), Zn(II) and Cd(II) by MntH2. However, no uptake responses for Cu(II), Fe(II) and Ni(II) were observed, while the presence of these metals abolishes the uptake signals for Mn(II). Fluorescence assays confirm that Ni(II) is transported. The data are discussed with respect
to properties and structures of Nramp-type family members and the ability of electrophysiology to
measure charge transport and not directly substrate transport.
Original languageEnglish
Article number255
Number of pages12
JournalMembranes
Volume10
Issue number10
DOIs
Publication statusPublished - 24 Sep 2020

Fingerprint

Dive into the research topics of 'Electrophysiology Measurements of Metal Transport by MntH2 from <i>Enterococcus faecalis</i>'. Together they form a unique fingerprint.

Cite this