Endoglin expression in breast tumor cells suppresses invasion and metastasis and correlates with improved clinical outcome

L. A. Henry, D. A. Johnson, D. Sarrio, S. Lee, P.R. Quinlan, T. Crook, A.M. Thompson, J. S. Reis-Filho, C. M. Isacke

    Research output: Contribution to journalArticlepeer-review

    56 Citations (Scopus)

    Abstract

    Tumor growth factor-beta (TGF-beta) signaling in cancer has been implicated in growth suppression of early lesions and enhancing tumor cell invasion and metastasis. However, the cellular mechanisms that determine this signaling output in individual tumors are still largely unknown. In endothelial cells, TGF-beta signaling is modulated by the TGF-beta co-receptor endoglin (CD105). Here we demonstrate that endoglin is expressed in a subset of invasive breast cancers and cell lines and is subject to epigenetic silencing by gene methylation. Endoglin downregulation in non-tumorigenic MCF10A breast cells leads to the formation of abnormal acini in 3D culture, but does not promote cell migration or transformation. In contrast, in the presence of activated ErbB2, endoglin downregulation in MCF10A cells leads to enhanced invasion into a 3D matrix. Consistent with these data, ectopic expression of endoglin in MDA-MB-231 cells blocks TGF-beta-enhanced cell motility and invasion and reduces lung colonization in an in vivo metastasis model. Unlike endothelial cells, endoglin does not modulate Smad-mediated TGF-beta signaling in breast cells but attenuates the cytoskeletal remodeling to impair cell migration and invasion. Importantly, in a large cohort of invasive breast cancers, lack of endoglin expression in the tumor cell compartment correlates with ENG gene methylation and poor clinical outcome. Oncogene (2011) 30, 1046-1058; doi:10.1038/onc.2010.488; published online 1 November 2010

    Original languageEnglish
    Pages (from-to)1046-1058
    Number of pages13
    JournalOncogene
    Volume30
    Issue number9
    DOIs
    Publication statusPublished - 2011

    Keywords

    • endoglin
    • CD105
    • breast cancer
    • TGF-beta
    • MCF10A
    • ErbB2
    • GROWTH-FACTOR-BETA
    • MOUSE SKIN CARCINOGENESIS
    • TGF-BETA
    • ENDOTHELIAL-CELLS
    • TRANSFORMING GROWTH-FACTOR-BETA-1
    • RECEPTOR
    • CANCER
    • MIGRATION
    • PROLIFERATION
    • ACTIVATION

    Fingerprint

    Dive into the research topics of 'Endoglin expression in breast tumor cells suppresses invasion and metastasis and correlates with improved clinical outcome'. Together they form a unique fingerprint.

    Cite this