Abstract
Understanding snow and ice melt dynamics is vital for flood risk assessment and effective water resource management in populated river basins sourced in inaccessible high-mountains. This study provides an AI-enabled hybrid approach integrating glacio-hydrological model outputs (GSM-SOCONT), with different machine learning and deep learning techniques framed as alternative ‘computational scenarios, leveraging both physical processes and data-driven insights for enhanced predictive capabilities. The standalone deep learning model (CNN-LSTM), relying solely on meteorological data, outperformed its counterpart machine learning and glacio-hydrological model equivalents. Hybrid models (CNN-LSTM1 to CNN-LSTM15) were trained using meteorological data augmented with glacio-hydrological model outputs representing ice and snow-melt contributions to streamflow. The hybrid model (CNN-LSTM14), using only glacier-derived features, performed best with high NSE (0.86), KGE (0.80), and R (0.93) values during calibration, and the highest NSE (0.83), KGE (0.88), R (0.91), and lowest RMSE (892) and MAE (544) during validation. Finally, a multi-scale analysis using different feature permutations was explored using wavelet transformation theory, integrating these into the final hybrid model (CNN-LSTM19), which significantly enhances predictive accuracy, particularly for high-flow events, as evidenced by improved NSE (from 0.83 to 0.97) and reduced RMSE (from 892 to 442) during validation. The comparative analysis illustrates how AI-enhanced hydrological models improve the accuracy of runoff forecasting and provide more reliable and actionable insights for managing water resources and mitigating flood risks - despite the paucity of direct measurements.
Original language | English |
---|---|
Article number | 2762 |
Number of pages | 26 |
Journal | Scientific Reports |
Volume | 15 |
DOIs | |
Publication status | Published - 22 Jan 2025 |
Keywords
- Artificial Intelligence (AI)
- Hydrological modelling
- Hybrid models
- Machine learning
- Deep learning
- Glacier-runoff simulation
- Upper Indus Basin
- Hindu-Kush Karakorum Himalaya region