TY - JOUR
T1 - Epigallocatechin-3-gallate improves the biocompatibility of bone substitutes in dental pulp stem cells
AU - Peláez-Cruz, Priscilla
AU - López Jornet, Pia
AU - Tatullo, Marco
AU - Pons-Fuster López, Eduardo
N1 - Copyright © 2022 Elsevier GmbH. All rights reserved.
PY - 2023/2
Y1 - 2023/2
N2 - Background: The Biocompatibility between osteoprogenitor cells and bone substitutes is necessary for cell differentiation and osteogenesis. The aim of this study was to assess the in vitro effect of bovine (Geistlich BioOss®), porcine (OsteoBiol Gen-Os®) and beta-tricalcium phosphate (Cerasorb M®) bone substitutes, and their combination with polyphenol epigallocatechin-3-gallate (EGCG), upon cultured dental pulp stem cells (DPSCs).Methods: The DPSCs were isolated from third molars extracted from healthy individuals and seeded with 5 mg/ml of Bio-Oss® (BO), Gen-Os® (GO) and Cerasorb® (CE) in combination with EGCG 1 μM. The effects were evaluated based on cell viability / cytotoxicity assay (MTT, cell viability staining test), cell migration, scanning electron microscopy (SEM), and alkaline phosphatase (ALP) activity.Results: BO and CE produced negative effects upon cell viability and migration, and GO and CE resulted in deficient cell adhesion. On the other hand, all the biomaterials exerted no negative effects upon ALP activity. Interestingly, the addition of EGCG reverted the cytotoxic effect and the loss of migration capacity in the BO and CE groups, and improved cell adhesion in the GO and CE groups. Furthermore, EGCG promoted an overall increased in ALP activity.Conclusion: The addition of EGCG to the tested biomaterials BO, GO and CE reverts their negative impact on DPSCs, and improves their biocompatibility with cultured DPSCs. The use of EGCG, thus, appears to be a promising strategy for restoring and enhancing the osteoconductive properties of BO, GO and CE in bone regeneration treatments.
AB - Background: The Biocompatibility between osteoprogenitor cells and bone substitutes is necessary for cell differentiation and osteogenesis. The aim of this study was to assess the in vitro effect of bovine (Geistlich BioOss®), porcine (OsteoBiol Gen-Os®) and beta-tricalcium phosphate (Cerasorb M®) bone substitutes, and their combination with polyphenol epigallocatechin-3-gallate (EGCG), upon cultured dental pulp stem cells (DPSCs).Methods: The DPSCs were isolated from third molars extracted from healthy individuals and seeded with 5 mg/ml of Bio-Oss® (BO), Gen-Os® (GO) and Cerasorb® (CE) in combination with EGCG 1 μM. The effects were evaluated based on cell viability / cytotoxicity assay (MTT, cell viability staining test), cell migration, scanning electron microscopy (SEM), and alkaline phosphatase (ALP) activity.Results: BO and CE produced negative effects upon cell viability and migration, and GO and CE resulted in deficient cell adhesion. On the other hand, all the biomaterials exerted no negative effects upon ALP activity. Interestingly, the addition of EGCG reverted the cytotoxic effect and the loss of migration capacity in the BO and CE groups, and improved cell adhesion in the GO and CE groups. Furthermore, EGCG promoted an overall increased in ALP activity.Conclusion: The addition of EGCG to the tested biomaterials BO, GO and CE reverts their negative impact on DPSCs, and improves their biocompatibility with cultured DPSCs. The use of EGCG, thus, appears to be a promising strategy for restoring and enhancing the osteoconductive properties of BO, GO and CE in bone regeneration treatments.
KW - Biocompatibility
KW - Bone regeneration
KW - Bone substitutes
KW - Epigallocatechin-3-gallate
KW - Human dental pulp stem cells
KW - Osteoconduction
UR - http://www.scopus.com/inward/record.url?scp=85146019656&partnerID=8YFLogxK
U2 - 10.1016/j.aanat.2022.152045
DO - 10.1016/j.aanat.2022.152045
M3 - Article
C2 - 36584903
VL - 246
JO - Annals of Anatomy
JF - Annals of Anatomy
SN - 0940-9602
M1 - 152045
ER -