Abstract
We investigated the ability of cationic liposomes composed of 1,5-dihexadecyl N-arginyl-L-glutamate (Arg-Glu2C(16)) to carry nucleic acids into neuronal cells. Such liposomes have been shown to have a remarkable capacity for transfecting immortalized cell lines. Lipoplexes between the Arg-Glu2C(16) liposomes and plasmid DNA encoding green fluorescent protein (GFP) were analyzed in terms of lipoplex formation, intracellular DNA trafficking, transfection efficiency, and cytotoxicity in neuronal SH-SY5Y cells. A maximum number of cells expressing GFP was obtained with lipoplexes at a lipid-to-DNA ratio of 15. With these lipoplexes, 16% of the cells were GFP- positive, which was approximately fourfold higher than the level obtained with a commercially available transfection reagent, Lipofectamine 2000. Furthermore, as a result of the low cytotoxicity of the Arg-Glu2C(16) lipoplexes, the proportion of GFP- positive cells could be increased to 25% by increasing the concentration of lipoplexes that was applied to the cells. We have demonstrated that Arg-Glu2C(16), as a model cationic amino acid-based lipid, has a high capability as a gene carrier, even for neuronal transfection.
From the Clinical Editor: In this study, specific cationic liposomes were characterized as nucleic acid transfection agents for neuronal cells. A fourfold higher transfection rate with low cytotoxicity was reported compared to Lipofectamine 2000, a commercial reagent. The authors conclude that the studied cationic liposomes have a high capability as a gene carrier for neuronal transfection. This may become clinically significant in future gene therapy efforts of neuronal diseases. (C) 2010 Elsevier Inc. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 70-77 |
Number of pages | 8 |
Journal | Nanomedicine: Nanotechnology, Biology and Medicine |
Volume | 6 |
Issue number | 1 |
DOIs | |
Publication status | Published - Feb 2010 |
Keywords
- Cationic liposomes
- Amino lipids
- Gene therapy
- Neuronal transfection
- Plasmid DNA
- MEDIATED GENE-TRANSFER
- INTERFERING RNA DELIVERY
- PLASMID DNA DELIVERY
- IN-VIVO
- CELL-TRANSFECTION
- GLIOMA-CELLS
- VITRO
- EXPRESSION
- COMPLEXES
- MECHANISM