TY - JOUR
T1 - Evaluation of MODIS gross primary productivity and land cover products for the humid tropics using oil palm trees in Peninsular Malaysia and Google Earth imagery
AU - Cracknell, Arthur Philip
AU - Kanniah, Kasturi Devi
AU - Tan, Kian Pang
AU - Wang, Lei
PY - 2013/10
Y1 - 2013/10
N2 - Conducting quantitative studies on the carbon balance or productivity of oil palm is important in understanding the role of this ecosystem in global climate change. In this study, we evaluated the accuracy of MODIS (Moderate Resolution Imaging Spectroradiometer) annual gross primary productivity (GPP) (the product termed MOD-17) and its upstream products, especially the MODIS land cover product (the product termed MOD-12). We used high-resolution Google Earth images to classify the land cover classes and their percentage cover within each 1 km spatial resolution MODIS pixel. We used field-based annual GPP for 2006 to estimate GPP for each pixel based on percentage cover. Both land cover and GPP were then compared to MODIS land cover and GPP products. The results show that for pure pixels that are 100% covered by mature oil palm trees, the RMSE (root mean square error) between MODIS and field-based annual GPP is 18%, and that this is increased to 27% for pixels containing mostly oil palm. Overall, for an area of about 42 km the RMSE is 26%. We conclude that land cover classification (at 1 km resolution) is one of the main factors for the discrepancy between MODIS and field-based GPP. We also conclude that the accuracy of the MODIS GPP product could be improved significantly by using higher-resolution land cover maps.
AB - Conducting quantitative studies on the carbon balance or productivity of oil palm is important in understanding the role of this ecosystem in global climate change. In this study, we evaluated the accuracy of MODIS (Moderate Resolution Imaging Spectroradiometer) annual gross primary productivity (GPP) (the product termed MOD-17) and its upstream products, especially the MODIS land cover product (the product termed MOD-12). We used high-resolution Google Earth images to classify the land cover classes and their percentage cover within each 1 km spatial resolution MODIS pixel. We used field-based annual GPP for 2006 to estimate GPP for each pixel based on percentage cover. Both land cover and GPP were then compared to MODIS land cover and GPP products. The results show that for pure pixels that are 100% covered by mature oil palm trees, the RMSE (root mean square error) between MODIS and field-based annual GPP is 18%, and that this is increased to 27% for pixels containing mostly oil palm. Overall, for an area of about 42 km the RMSE is 26%. We conclude that land cover classification (at 1 km resolution) is one of the main factors for the discrepancy between MODIS and field-based GPP. We also conclude that the accuracy of the MODIS GPP product could be improved significantly by using higher-resolution land cover maps.
UR - http://www.scopus.com/inward/record.url?scp=84881651537&partnerID=8YFLogxK
U2 - 10.1080/01431161.2013.820367
DO - 10.1080/01431161.2013.820367
M3 - Article
AN - SCOPUS:84881651537
SN - 0143-1161
VL - 34
SP - 7400
EP - 7423
JO - International Journal of Remote Sensing
JF - International Journal of Remote Sensing
IS - 20
ER -