Evolutionary super-resolution

Baptiste Roziere, Nathanaël Carraz Rakotonirina, Vlad Hosu, Hanhe Lin, Andry Rasoanaivo, Olivier Teytaud, Camille Couprie

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Super-resolution increases the resolution of an image. Using evolutionary optimization, we optimize the noise injection of a super-resolution method for improving the results. More generally, our approach can be used to optimize any method based on noise injection.

Original languageEnglish
Title of host publicationGECCO '20
Subtitle of host publicationProceedings of the 2020 Genetic and Evolutionary Computation Conference Companion
Place of PublicationNew York, NY
PublisherAssociation for Computing Machinery
Pages151-152
Number of pages2
ISBN (Electronic)9781450371278
DOIs
Publication statusPublished - 8 Jul 2020
Event2020 Genetic and Evolutionary Computation Conference, GECCO 2020 - Cancun, Mexico
Duration: 8 Jul 202012 Jul 2020

Publication series

NameGECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion

Conference

Conference2020 Genetic and Evolutionary Computation Conference, GECCO 2020
Country/TerritoryMexico
CityCancun
Period8/07/2012/07/20

ASJC Scopus subject areas

  • Computational Mathematics

Fingerprint

Dive into the research topics of 'Evolutionary super-resolution'. Together they form a unique fingerprint.

Cite this