TY - GEN
T1 - Evolutionary super-resolution
AU - Roziere, Baptiste
AU - Rakotonirina, Nathanaël Carraz
AU - Hosu, Vlad
AU - Lin, Hanhe
AU - Rasoanaivo, Andry
AU - Teytaud, Olivier
AU - Couprie, Camille
N1 - Funding Information:
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 251654672 – TRR 161 (Project A05).
Publisher Copyright:
© 2020 Owner/Author.
PY - 2020/7/8
Y1 - 2020/7/8
N2 - Super-resolution increases the resolution of an image. Using evolutionary optimization, we optimize the noise injection of a super-resolution method for improving the results. More generally, our approach can be used to optimize any method based on noise injection.
AB - Super-resolution increases the resolution of an image. Using evolutionary optimization, we optimize the noise injection of a super-resolution method for improving the results. More generally, our approach can be used to optimize any method based on noise injection.
UR - http://www.scopus.com/inward/record.url?scp=85089746811&partnerID=8YFLogxK
U2 - 10.1145/3377929.3389959
DO - 10.1145/3377929.3389959
M3 - Conference contribution
AN - SCOPUS:85089746811
T3 - GECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion
SP - 151
EP - 152
BT - GECCO '20
PB - Association for Computing Machinery
CY - New York, NY
T2 - 2020 Genetic and Evolutionary Computation Conference, GECCO 2020
Y2 - 8 July 2020 through 12 July 2020
ER -