Abstract
The Wigner transform (WT) has been extensively used in the formulation of phase-space models for a variety of wave propagation problems including high-frequency limits, nonlinear and random waves. It is well known that the WT features counterintuitive 'interference terms,' which often make computation impractical. In this connection, we propose the use of the smoothed Wigner transform (SWT), and derive new, exact equations for it, covering a broad class of wave propagation problems. Equations for spectrograms are included as a special case. The 'taming' of the interference terms by the SWT is illustrated, and an asymptotic model for the Schrödinger equation is constructed and numerically verified. © 2007 Elsevier Inc. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 378-392 |
Number of pages | 15 |
Journal | Applied and Computational Harmonic Analysis |
Volume | 24 |
Issue number | 3 |
DOIs | |
Publication status | Published - May 2008 |