TY - JOUR
T1 - Exercise decreases PP2A-specific reversible thiol oxidation in human erythrocytes
T2 - Implications for redox biomarkers
AU - Muggeridge, David J.
AU - Crabtree, Daniel R.
AU - Tuncay, Ahmet
AU - Megson, Ian L.
AU - Davison, Gareth
AU - Cobley, James
N1 - Copyright © 2022 Elsevier Inc. All rights reserved.
PY - 2022/3
Y1 - 2022/3
N2 - New readily accessible systemic redox biomarkers are needed to understand the biological roles reactive oxygen species (ROS) play in humans because overtly flawed, technically fraught, and unspecific assays severely hamper translational progress. The antibody-linked oxi-state assay (ALISA) makes it possible to develop valid ROS-sensitive target-specific protein thiol redox state biomarkers in a readily accessible microplate format. Here, we used a maximal exercise bout to disrupt redox homeostasis in a physiologically meaningful way to determine whether the catalytic core of the serine/threonine protein phosphatase PP2A is a candidate systemic redox biomarker in human erythrocytes. We reasoned that: constitutive oxidative stress (e.g., haemoglobin autoxidation) would sensitise erythrocytes to disrupted ion homeostasis as manifested by increased oxidation of the ion regulatory phosphatase PP2A. Unexpectedly, an acute bout of maximal exercise lasting ˜16 min decreased PP2A-specific reversible thiol oxidation (redox ratio, rest: 0.46; exercise: 0.33) without changing PP2A content (rest: 193 pg/ml; exercise: 191 pg/ml). The need for only 3-4 μl of sample to perform ALISA means PP2A-specific reversible thiol oxidation is a capillary-fingertip blood-compatible candidate redox biomarker. Consistent with biologically meaningful redox regulation, thiol reductant-inducible PP2A activity was significantly greater (+10%) at rest compared to exercise. We establish a route to developing new readily measurable protein thiol redox biomarkers for understanding the biological roles ROS play in humans.
AB - New readily accessible systemic redox biomarkers are needed to understand the biological roles reactive oxygen species (ROS) play in humans because overtly flawed, technically fraught, and unspecific assays severely hamper translational progress. The antibody-linked oxi-state assay (ALISA) makes it possible to develop valid ROS-sensitive target-specific protein thiol redox state biomarkers in a readily accessible microplate format. Here, we used a maximal exercise bout to disrupt redox homeostasis in a physiologically meaningful way to determine whether the catalytic core of the serine/threonine protein phosphatase PP2A is a candidate systemic redox biomarker in human erythrocytes. We reasoned that: constitutive oxidative stress (e.g., haemoglobin autoxidation) would sensitise erythrocytes to disrupted ion homeostasis as manifested by increased oxidation of the ion regulatory phosphatase PP2A. Unexpectedly, an acute bout of maximal exercise lasting ˜16 min decreased PP2A-specific reversible thiol oxidation (redox ratio, rest: 0.46; exercise: 0.33) without changing PP2A content (rest: 193 pg/ml; exercise: 191 pg/ml). The need for only 3-4 μl of sample to perform ALISA means PP2A-specific reversible thiol oxidation is a capillary-fingertip blood-compatible candidate redox biomarker. Consistent with biologically meaningful redox regulation, thiol reductant-inducible PP2A activity was significantly greater (+10%) at rest compared to exercise. We establish a route to developing new readily measurable protein thiol redox biomarkers for understanding the biological roles ROS play in humans.
KW - ALISA
KW - Protein thiol
KW - Biomarker
KW - Redox signalling
KW - Oxidative stress
KW - Exercise
KW - PP2A
KW - Human
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85125272310&origin=inward
U2 - 10.1016/j.freeradbiomed.2022.02.019
DO - 10.1016/j.freeradbiomed.2022.02.019
M3 - Article
C2 - 35217176
VL - 182
SP - 73
EP - 78
JO - Free radical biology & medicine
JF - Free radical biology & medicine
ER -