Projects per year
Abstract
Broadening the genetic base of crops is crucial for developing varieties to respond to global agricultural challenges such as climate change. Here, we analysed a diverse panel of 371 domesticated lines of the model crop barley to explore the genetics of crop adaptation. We first collected exome sequence data and phenotypes of key life history traits from contrasting multi-environment common garden trials. Then we applied refined statistical methods, including some based on exomic haplotype states, for genotype-by-environment (G×E) modelling. Sub-populations defined from exomic profiles were coincident with barley's biology, geography and history, and explained a high proportion of trial phenotypic variance. Clear G×E interactions indicated adaptation profiles that varied for landraces and cultivars. Exploration of circadian clock-related genes, associated with the environmentally adaptive days to heading trait (crucial for the crop's spread from the Fertile Crescent), illustrated complexities in G×E effect directions, and the importance of latitudinally based genic context in the expression of large-effect alleles. Our analysis supports a gene-level scientific understanding of crop adaption and leads to practical opportunities for crop improvement, allowing the prioritisation of genomic regions and particular sets of lines for breeding efforts seeking to cope with climate change and other stresses.
Original language | English |
---|---|
Pages (from-to) | 1172-1191 |
Number of pages | 20 |
Journal | Plant Journal |
Volume | 99 |
Issue number | 6 |
Early online date | 20 May 2019 |
DOIs | |
Publication status | Published - 13 Sept 2019 |
Keywords
- H. vulgare ssp. vulgare
- adaptation
- barley
- common garden trials
- exome sequence haplotypes
- genetic diversity
- genotype-by-environment interactions
ASJC Scopus subject areas
- Genetics
- Plant Science
- Cell Biology
Fingerprint
Dive into the research topics of 'Exome sequences and multi-environment field trials elucidate the genetic basis of adaptation in barley'. Together they form a unique fingerprint.Projects
- 1 Finished
-
An Integrated Approach to Evaluate and Harvest Genetic Diversity for Breeding Climate-Resistent Barley (FACCE-JPI ERANET) (Joint with Univerities of Helsinki, Copenhagen, East Anglia, Milan, Hebrew University of Jerusalem, Spanish National Research Council, Leibniz Institute of Plant Genetic and Crop Pland Research and Agricultural Research Council, Spain)
Waugh, R. (Investigator)
Biotechnology and Biological Sciences Research Council
2/02/15 → 1/02/18
Project: Research