Experimental analytical design of CNC machine tool SCFC based on electro-pneumatic system simulation

Bankole I. Oladapo, V. A. Balogun, S. Oyegoke, A. O.M. Adeoye, C. O. Ijagbemi, S. O. Afolabi, I. A. Daniyan, S. O. Akinola, A. P. Simeon, I. D. Uchegbu

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)
15 Downloads (Pure)

Abstract

A Smart Clamping Force Control (SCFC) is adapted to hold sensitive workpiece using magnetic proximity switch during a machining operation on the CNC machine tool. It has been ascertained that work-holding of different workpiece materials and shapes during machining operation is one of the problems encountered during CNC milling machining operations. This work proposes a novel clamping strategy for workpieces with the aid of SCFC. The purpose of the study is to adjust the forward movement of the clamp and reduce the damage caused by the clamp on the workpiece, this depends on the material of the work-piece. The speed of the clamp is reduced using the inlet flow control throttle valve and a magnetic proximity switch (MPS). It provides careful handling of workpiece and prevent it from damage and as well optimizes the forward movement of the cylinder. The proposed strategy is based on dynamic machine loading in which the impact of applied forces were monitored to optimize the clamping control system of the machine tool. The mode of operation and performance of the SCFC were simulated in the FluidSIM® software, and the validated results was presented on Festo workstation. This work therefore further elucidate the fundamental design criterion for machine tool clamping forces and the sustainable manufacture of its components.

Original languageEnglish
Pages (from-to)1958-1965
Number of pages8
JournalEngineering Science and Technology, an International Journal
Volume19
Issue number4
Early online date12 Sept 2016
DOIs
Publication statusPublished - Dec 2016

Keywords

  • Clamping force
  • CNC machining
  • Magnetic proximity switch
  • Manufacturing
  • Simulation
  • Work-piece

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Civil and Structural Engineering
  • Biomaterials
  • Mechanical Engineering
  • Hardware and Architecture
  • Fluid Flow and Transfer Processes
  • Computer Networks and Communications
  • Metals and Alloys

Fingerprint

Dive into the research topics of 'Experimental analytical design of CNC machine tool SCFC based on electro-pneumatic system simulation'. Together they form a unique fingerprint.

Cite this