Projects per year
Abstract
Background & Aims: Nonalcoholic steatohepatitis (NASH) is associated with oxidative stress. We surmised that pharmacologic activation of NF-E2 p45-related factor 2 (Nrf2) using the acetylenic tricyclic bis(cyano enone) TBE-31 would suppress NASH because Nrf2 is a transcriptional master regulator of intracellular redox homeostasis.
Methods: Nrf2+/+ and Nrf2-/- C57BL/6 mice were fed a high-fat plus fructose (HFFr) or regular chow diet for 16 weeks or 30 weeks, and then treated for the final 6 weeks, while still being fed the same HFFr or regular chow diets, with either TBE-31 or dimethyl sulfoxide vehicle control. Measures of whole-body glucose homeostasis, histologic assessment of liver, and biochemical and molecular measurements of steatosis, endoplasmic reticulum (ER) stress, inflammation, apoptosis, fibrosis, and oxidative stress were performed in livers from these animals.
Results: TBE-31 treatment reversed insulin resistance in HFFr-fed wild-type mice, but not in HFFr-fed Nrf2-null mice. TBE-31 treatment of HFFr-fed wild-type mice substantially decreased liver steatosis and expression of lipid synthesis genes, while increasing hepatic expression of fatty acid oxidation and lipoprotein assembly genes. Also, TBE-31 treatment decreased ER stress, expression of inflammation genes, and markers of apoptosis, fibrosis, and oxidative stress in the livers of HFFr-fed wild-type mice. By comparison, TBE-31 did not decrease steatosis, ER stress, lipogenesis, inflammation, fibrosis, or oxidative stress in livers of HFFr-fed Nrf2-null mice.
Conclusions: Pharmacologic activation of Nrf2 in mice that had already been rendered obese and insulin resistant reversed insulin resistance, suppressed hepatic steatosis, and mitigated against NASH and liver fibrosis, effects that we principally attribute to inhibition of ER, inflammatory, and oxidative stress.
Original language | English |
---|---|
Pages (from-to) | 367-398 |
Number of pages | 32 |
Journal | Cellular and Molecular Gastroenterology and Hepatology |
Volume | 5 |
Issue number | 3 |
Early online date | 12 Dec 2017 |
DOIs | |
Publication status | Published - 1 Mar 2018 |
Keywords
- NASH
- Nrf2
- TBE-31
ASJC Scopus subject areas
- Hepatology
- Gastroenterology
Fingerprint
Dive into the research topics of 'Experimental Nonalcoholic Steatohepatitis and Liver Fibrosis Are Ameliorated by Pharmacologic Activation of Nrf2 (NF-E2 p45-Related Factor 2)'. Together they form a unique fingerprint.Projects
- 4 Finished
-
Contribution by NRF2 Upregulation to Lung Carcinogenesis and the Possible Therapeutic Value of NRF2 Inhibition by GSK-3 (Joint with Universities of St Andrews, Edinburgh and Pennsylvania)
Dinkova-Kostova, A. (Investigator), Hayes, J. (Investigator), Henderson, C. (Investigator), Keyse, S. (Investigator), Lamond, A. (Investigator) & Sutherland, C. (Investigator)
1/05/16 → 31/10/19
Project: Research
-
Targeting the Aspartic Protease BACE1 for Inhibition in Order to Increase Hypothalamic Leptin Sensitivity and Reverse Obesity
Ashford, M. (Investigator)
1/01/13 → 31/12/15
Project: Research
-
Application of Selected-Reaction Monitoring (SRM) Mass Spectrometry for the Global Analysis of the Phosphorylation Status of Protein Kinases
Ashford, M. (Investigator), Dillon, J. (Investigator), Hayes, J. (Investigator), McCrimmon, R. (Investigator) & Trost, M. (Investigator)
1/11/12 → 31/03/16
Project: Research
Profiles
-
Ashford, Michael
- Diabetes Endocrinology and Reproductive Biology - Professor (Teaching and Research)
Person: Academic
-
Dillon, John
- Respiratory Medicine and Gastroenterology - Clinical Professor (Teaching and Research) of Hepatology and Gastroenterology
Person: Academic
-
Hayes, John
- Cancer Research - Professor (Teaching and Research) of Molecular Carcinogenesis
Person: Academic