Abstract
Aberrations in protein modification with ubiquitin-fold modifier (UFM1) are associated with a range of diseases, but the biological function and regulation of this post-translational modification, known as UFMylation, remain enigmatic. To provide activity-based probes for UFMylation, we have developed a new method for the installation of electrophilic warheads at the C-terminus of recombinant UFM1. A C-terminal UFM1 acyl hydrazide was readily produced by selective intein cleavage and chemoselectively acylated by a variety of carboxylic acid anhydrides at pH 3, without detriment to the folded protein or reactions at unprotected amino acid side chains. The resulting UFM1 activity-based probes show a range of tunable reactivity and high selectivity for proteins involved in UFMylation processes; structurally related E1s, E2s, and proteases associated with Ub or other Ubls were unreactive. The UFM1 probes were active both in cell lysates and in living cells. A previously inaccessible α-chloroacetyl probe was remarkably selective for covalent modification of the active-site cysteine of de-UFMylase UFSP2 in cellulo.
Original language | English |
---|---|
Pages (from-to) | 756-762 |
Number of pages | 7 |
Journal | ACS Central Science |
Volume | 8 |
Issue number | 6 |
Early online date | 17 May 2022 |
DOIs | |
Publication status | Published - 22 Jun 2022 |
ASJC Scopus subject areas
- General Chemistry
- General Chemical Engineering