TY - JOUR
T1 - Fluorescence “Switch on” of Conjugates of CdTe@ZnS Quantum Dots with Al, Ni and Zn Tetraamino-Phthalocyanines by Hydrogen Peroxide
T2 - Characterization and Applications as Luminescent Nanosensors
AU - Adegoke, Oluwasesan
AU - Khene, Samson
AU - Nyokong, Tebello
PY - 2013/9
Y1 - 2013/9
N2 - In this study, we have developed a novel nanoprobe for H2O2 based on the conjugation of CdTe@ZnS quantum dots (QDs) to different metal tetraamino-phthalocyanine (MTAPc): (M = (OAc)Al, {OAc = acetate}, Ni and Zn). Chemical coordination of the QDs to the MTAPc resulted in the fluorescence "switch off" of the linked QDs which was associated with Förster resonance energy transfer (FRET). In the presence of varying concentration of H2O2, the fluorescence of the linked QDs was progressively "switched on" and the FRET mechanism between the QDs and the MTAPc was disrupted. The sensitivity/limit of detection of the nanoprobe followed the order: QDs-ZnTAPc (2.2 μM) > QDs-NiTAPc (4.4 μM) > QDs-AlTAPc (9.8 μM) while the selectivity followed the order: QDs-NiTAPc > QDs-AlTAPc > QDs-ZnTAPc. The varying degree of sensitivity/selectivity and mechanism of detection is discussed in detail.
AB - In this study, we have developed a novel nanoprobe for H2O2 based on the conjugation of CdTe@ZnS quantum dots (QDs) to different metal tetraamino-phthalocyanine (MTAPc): (M = (OAc)Al, {OAc = acetate}, Ni and Zn). Chemical coordination of the QDs to the MTAPc resulted in the fluorescence "switch off" of the linked QDs which was associated with Förster resonance energy transfer (FRET). In the presence of varying concentration of H2O2, the fluorescence of the linked QDs was progressively "switched on" and the FRET mechanism between the QDs and the MTAPc was disrupted. The sensitivity/limit of detection of the nanoprobe followed the order: QDs-ZnTAPc (2.2 μM) > QDs-NiTAPc (4.4 μM) > QDs-AlTAPc (9.8 μM) while the selectivity followed the order: QDs-NiTAPc > QDs-AlTAPc > QDs-ZnTAPc. The varying degree of sensitivity/selectivity and mechanism of detection is discussed in detail.
U2 - 10.1007/s10895-013-1222-x
DO - 10.1007/s10895-013-1222-x
M3 - Article
C2 - 23604816
SN - 1053-0509
VL - 23
SP - 963
EP - 974
JO - Journal of Fluorescence
JF - Journal of Fluorescence
IS - 5
ER -