TY - JOUR
T1 - Forces, movements and reflexes produced by pushing human teeth
AU - Scott, Brendan J. J.
AU - Mason, Andrew G.
AU - Cadden, Samual W.
N1 - Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2012
Y1 - 2012
N2 - Pushing a tooth results in movement of the tooth and reflex inhibition of activity in jaw-closing muscles. The aims of this study were to determine how much tooth movement is required to elicit such reflexes and whether this is dependent on the point of force application to the tooth. Eight experiments were performed on six volunteer subjects. Electromyograms (EMGs) were recorded from a masseter muscle while the subjects produced approximately 12.5 % of the EMG associated with maximal clenching. Reflexes were evoked by pushing at two positions (incisal and cervical) on an upper central incisor. The forces applied and the resulting movements of the tooth were recorded. There was a linear relationship between force and movement regardless of whether the force was incisal or cervical (Pearson's r = 0.91 and r = 0.93 respectively). There were no differences between the slopes or intercepts for these relationships (ANCOVA p = 0.42, p = 0.46 respectively). There were linear relationships between the logarithms of force or movement and the resulting inhibitory reflexes (r = 0.81, 0.79, 0.81 and 0.74 for incisal and cervical forces and incisal and cervical movements, respectively). Again, there were no significant differences between the slopes for these relationships (ANCOVA p = 0.75, p = 0.46 for force and movement, respectively). There were no significant differences between the reflex thresholds for incisal and cervical stimuli in terms of force (0.23 and 0.25 N, ANCOVA p = 0.1) or movement (9.7 and 8.5 µm, ANCOVA p = 0.22). Thus, it appears that neither tooth movements nor jaw reflexes are dependent on the point of force application to a tooth.
AB - Pushing a tooth results in movement of the tooth and reflex inhibition of activity in jaw-closing muscles. The aims of this study were to determine how much tooth movement is required to elicit such reflexes and whether this is dependent on the point of force application to the tooth. Eight experiments were performed on six volunteer subjects. Electromyograms (EMGs) were recorded from a masseter muscle while the subjects produced approximately 12.5 % of the EMG associated with maximal clenching. Reflexes were evoked by pushing at two positions (incisal and cervical) on an upper central incisor. The forces applied and the resulting movements of the tooth were recorded. There was a linear relationship between force and movement regardless of whether the force was incisal or cervical (Pearson's r = 0.91 and r = 0.93 respectively). There were no differences between the slopes or intercepts for these relationships (ANCOVA p = 0.42, p = 0.46 respectively). There were linear relationships between the logarithms of force or movement and the resulting inhibitory reflexes (r = 0.81, 0.79, 0.81 and 0.74 for incisal and cervical forces and incisal and cervical movements, respectively). Again, there were no significant differences between the slopes for these relationships (ANCOVA p = 0.75, p = 0.46 for force and movement, respectively). There were no significant differences between the reflex thresholds for incisal and cervical stimuli in terms of force (0.23 and 0.25 N, ANCOVA p = 0.1) or movement (9.7 and 8.5 µm, ANCOVA p = 0.22). Thus, it appears that neither tooth movements nor jaw reflexes are dependent on the point of force application to a tooth.
UR - http://www.scopus.com/inward/record.url?scp=84857939788&partnerID=8YFLogxK
U2 - 10.1007/s00221-012-3056-1
DO - 10.1007/s00221-012-3056-1
M3 - Article
C2 - 22415202
SN - 0014-4819
SP - 1
EP - 9
JO - Experimental Brain Research
JF - Experimental Brain Research
ER -