Projects per year
Abstract
Electrical energy storage systems such as rechargeable lithium-ion batteries (LiBs) and supercapacitors have shown great promise as sustainable energy storage systems [1-4]. However, LiBs have high specific energy density (energy stored per unit mass) and act as slow, steady suppliers for large energy demands. In contrast, supercapacitors possess high specific power (energy transferred per unit mass per unit time) and can charge and discharge quickly for low energy demands. In LiBs, graphite is the most common anode material, although high electrolyte sensitivity and low charge capacity can limit performance. Efforts have been made to improve LiB or supercapacitor performance using alternative electrode materials such as carbon nanotubes and manganese oxides (MnxOy) [3, 5-14]. Microorganisms play significant roles in metal and mineral biotransformations [15-22]. Fungi possess various biomineralization properties, as well as a filamentous mycelium, which may provide mechanical support for mineral deposition. Although some research has been carried out on the application of biological materials as carbon precursors [8, 9, 23], biomineralizing fungal systems have not been investigated. In this research, novel electrochemical materials have been synthesized using a fungal Mn biomineralization process based on urease-mediated Mn carbonate bioprecipitation [24]. The carbonized fungal biomass-mineral composite (MycMnOx/C) showed a high specific capacitance (>350 F g-1) in a supercapacitor and excellent cycling stability (>90% capacity was retained after 200 cycles) in LiBs. This is the first demonstration of the synthesis of electrode materials using a fungal biomineralization process, thus providing a novel strategy for the preparation of sustainable electrochemical materials. Li et al. synthesized novel electrochemical materials using a fungal Mn biomineralization process. They studied the electrochemical properties of the carbonized fungal biomass-mineral composite in a supercapacitor and a lithium-ion battery, thus providing a novel biotechnological method for preparation of sustainable electrochemical materials.
Original language | English |
---|---|
Pages (from-to) | 950-955 |
Number of pages | 6 |
Journal | Current Biology |
Volume | 26 |
Issue number | 7 |
Early online date | 17 Mar 2016 |
DOIs | |
Publication status | Published - 4 Apr 2016 |
Keywords
- Biomineralization
- Electrochemical materials
- Fungi
- Manganese
ASJC Scopus subject areas
- General Agricultural and Biological Sciences
- General Biochemistry,Genetics and Molecular Biology
Fingerprint
Dive into the research topics of 'Fungal Biomineralization of Manganese as a Novel Source of Electrochemical Materials'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Tellurium and Selenium Cycling and Supply (Joint with Universities of Leicester, Durham, Edinburgh, Cardiff, Aberdeen and Open University and Natural History Museum)
Gadd , G. M. (Investigator)
1/05/15 → 4/03/20
Project: Research
-
COG3: The Geology, Geometallurgy and Geomicrobiology of Cobalt Resources Leading to New Product Streams (joint with Natural History Museum and Universities of Manchester, Bangor, Exeter, Loughborough and Southampton and Industrial Partner)
Gadd , G. M. (Investigator)
1/05/15 → 31/03/21
Project: Research