Generation and control of multiple Bessel beams for optical micromanipulation

T. Cizmar, V. Kollarova, X. Tsampoula, F. Gunn-Moore, Z. Bouchal, K. Dholakia

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    3 Citations (Scopus)


    In the area of optical micro-manipulations Bessel beams are well known for their unique properties such as non-diffracting propagation over a large area or their ability to reconstruct themselves after passing a disturbing obstacle. In this paper we demonstrate how the spatial spectrum phase modulation of such Bessel beam can be used for its precise three-dimensional position control or even splitting it in several parallel Bessel beams. Applying these features to a simple computer-driven interactive setup enabled us to guide selected particles between remote planes demonstrating the possibility of active sorting of micro-objects. In the case of two axially shifted co-axial Bessel beams a system of counter-propagating Bessel beams can be obtained using a mirror. The interference of such counter-propagating beams provide a standing-wave axial modulation of the field intensity. The position of this standing wave peaks can be controlled altering phase of one of the beams leading, to the concept of an Optical conveyor belt' for transport of micro-objects. However, using a time-sharing between the two beams causes that the interference is suppressed, but. their correct axial overlap assures a, stable position for object confinement. This geometry can be used then for real-time interactive three-dimensional position control of several objects. Such light fields have broader applications, for example in two-photon processes in biophysics such as, photoporation of living cells providing transport of modified DNA from surrounding medium inside the cell volume and consequent, synthesis of fluorescent protein.

    Original languageEnglish
    Title of host publicationOptical Trapping and Optical Micromanipulation V
    EditorsKishan Dholakia, Gabriel C. Spalding
    Place of PublicationBellingham
    PublisherSPIE-International Society for Optical Engineering
    Number of pages7
    ISBN (Print)9780819472588
    Publication statusPublished - 2008
    EventSPIE Optics+Photonics 2008: Optical Trapping and Optical Micromanipulation V - San Diego Convention Center, San Diego, United States
    Duration: 10 Aug 200813 Aug 2008

    Publication series

    NameProceedings of SPIE
    ISSN (Print)0277-786X


    ConferenceSPIE Optics+Photonics 2008: Optical Trapping and Optical Micromanipulation V
    Abbreviated title
    Country/TerritoryUnited States
    CitySan Diego
    Internet address


    • non-diffracting beam
    • Bessel beam
    • holographic beam shaping
    • photoporation
    • spatial spectrum


    Dive into the research topics of 'Generation and control of multiple Bessel beams for optical micromanipulation'. Together they form a unique fingerprint.

    Cite this