TY - JOUR
T1 - Genome-wide association mapping in a diverse spring barley collection reveals the presence of QTL hotspots and candidate genes for root and shoot architecture traits at seedling stage
AU - Abdel-Ghani, Adel H.
AU - Sharma, Rajiv
AU - Wabila, Celestine
AU - Dhanagond, Sidram
AU - Owais, Saed J.
AU - Duwayri, Mahmud A.
AU - Al-Dalain, Saddam A.
AU - Klukas, Christian
AU - Chen, Dijun
AU - Lübberstedt, Thomas
AU - von Wirén, Nicolaus
AU - Graner, Andreas
AU - Kilian, Benjamin
AU - Neumann, Kerstin
N1 - The authors are indebted to the Deutsche Forschungsgemeinschaft (DFG, projects KI 1465/8–1 and KI 1465/9–1) and Deutscher Akademischer Austauschdienst (DAAD, project ID A/14/05106) for supporting Dr. Abdel-Ghani’s scientific visits to the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK). Further, we are thankful for funding of Sidram Dhanagond by the Federal Ministry of Education and Research of Germany in the frame of the BARSELECT project (0315969D).
PY - 2019/5/23
Y1 - 2019/5/23
N2 - Background: Adaptation to drought-prone environments requires robust root architecture. Genotypes with a more vigorous root system have the potential to better adapt to soils with limited moisture content. However, root architecture is complex at both, phenotypic and genetic level. Customized mapping panels in combination with efficient screenings methods can resolve the underlying genetic factors of root traits.Results: A mapping panel of 233 spring barley genotypes was evaluated for root and shoot architecture traits under non-stress and osmotic stress. A genome-wide association study elucidated 65 involved genomic regions. Among them were 34 root-specific loci, eleven hotspots with associations to up to eight traits and twelve stress-specific loci. A list of candidate genes was established based on educated guess. Selected genes were tested for associated polymorphisms. By this, 14 genes were identified as promising candidates, ten remained suggestive and 15 were rejected. The data support the important role of flowering time genes, including HvPpd-H1, HvCry2, HvCO4 and HvPRR73. Moreover, seven root-related genes, HERK2, HvARF04, HvEXPB1, PIN5, PIN7, PME5 and WOX5 are confirmed as promising candidates. For the QTL with the highest allelic effect for root thickness and plant biomass a homologue of the Arabidopsis Trx-m3 was revealed as the most promising candidate.Conclusions: This study provides a catalogue of hotspots for seedling growth, root and stress-specific genomic regions along with candidate genes for future potential incorporation in breeding attempts for enhanced yield potential, particularly in drought-prone environments. Root architecture is under polygenic control. The co-localization of well-known major genes for barley development and flowering time with QTL hotspots highlights their importance for seedling growth. Association analysis revealed the involvement of HvPpd-H1 in the development of the root system. The co-localization of root QTL with HERK2, HvARF04, HvEXPB1, PIN5, PIN7, PME5 and WOX5 represents a starting point to explore the roles of these genes in barley. Accordingly, the genes HvHOX2, HsfA2b, HvHAK2, and Dhn9, known to be involved in abiotic stress response, were located within stress-specific QTL regions and await future validation.
AB - Background: Adaptation to drought-prone environments requires robust root architecture. Genotypes with a more vigorous root system have the potential to better adapt to soils with limited moisture content. However, root architecture is complex at both, phenotypic and genetic level. Customized mapping panels in combination with efficient screenings methods can resolve the underlying genetic factors of root traits.Results: A mapping panel of 233 spring barley genotypes was evaluated for root and shoot architecture traits under non-stress and osmotic stress. A genome-wide association study elucidated 65 involved genomic regions. Among them were 34 root-specific loci, eleven hotspots with associations to up to eight traits and twelve stress-specific loci. A list of candidate genes was established based on educated guess. Selected genes were tested for associated polymorphisms. By this, 14 genes were identified as promising candidates, ten remained suggestive and 15 were rejected. The data support the important role of flowering time genes, including HvPpd-H1, HvCry2, HvCO4 and HvPRR73. Moreover, seven root-related genes, HERK2, HvARF04, HvEXPB1, PIN5, PIN7, PME5 and WOX5 are confirmed as promising candidates. For the QTL with the highest allelic effect for root thickness and plant biomass a homologue of the Arabidopsis Trx-m3 was revealed as the most promising candidate.Conclusions: This study provides a catalogue of hotspots for seedling growth, root and stress-specific genomic regions along with candidate genes for future potential incorporation in breeding attempts for enhanced yield potential, particularly in drought-prone environments. Root architecture is under polygenic control. The co-localization of well-known major genes for barley development and flowering time with QTL hotspots highlights their importance for seedling growth. Association analysis revealed the involvement of HvPpd-H1 in the development of the root system. The co-localization of root QTL with HERK2, HvARF04, HvEXPB1, PIN5, PIN7, PME5 and WOX5 represents a starting point to explore the roles of these genes in barley. Accordingly, the genes HvHOX2, HsfA2b, HvHAK2, and Dhn9, known to be involved in abiotic stress response, were located within stress-specific QTL regions and await future validation.
KW - Barley
KW - Candidate genes
KW - Genome-wide association study
KW - Osmotic stress
KW - Root architecture
UR - http://www.scopus.com/inward/record.url?scp=85066401514&partnerID=8YFLogxK
U2 - 10.1186/s12870-019-1828-5
DO - 10.1186/s12870-019-1828-5
M3 - Article
C2 - 31122195
SN - 1471-2229
VL - 19
SP - 1
EP - 19
JO - BMC Plant Biology
JF - BMC Plant Biology
M1 - 216
ER -