Genomic determinants of biological age estimated by deep learning applied to retinal images

Yu Huang, Mohammad Ghouse Syed, Ruiye Chen, Cong Li, Xianwen Shang, Wei Wang, Xueli Zhang, Xiayin Zhang, Shulin Tang, Jing Liu, Shunming Liu, Sundar Srinivasan, Yijun Hu, Muthu Rama Krishnan Mookiah, Huan Wang, Emanuele Trucco, Honghua Yu, Colin Palmer, Zhuoting Zhu, Alexander S F Doney (Lead / Corresponding author)Mingguang He (Lead / Corresponding author)

Research output: Contribution to journalArticlepeer-review

6 Downloads (Pure)

Abstract

With the development of deep learning (DL) techniques, there has been a successful application of this approach to determine biological age from latent information contained in retinal images. Retinal age gap (RAG) defined as the difference between chronological age and predicted retinal age has been established previously to predict the age-related disease. In this study, we performed discovery genome-wide association analysis (GWAS) on the RAG using the 31,271 UK Biobank participants and replicated our findings in 8034 GoDARTS participants. The genetic correlation between RAGs predicted from the two cohorts was 0.67 (P = 0.021). After meta-analysis, we found 13 RAG loci which might be related to retinal vessel density and other aging processes. The SNP-wide heritability (h2) of RAG was 0.15. Meanwhile, by performing Mendelian randomization analysis, we found that glycated hemoglobin, inflammation hemocytes, and anemia might be associated with accelerated retinal aging. Our study explored the biological implications and molecular-level mechanism of RAG, which might enable causal inference of the aging process as well as provide potential pharmaceutical intervention targets for further treatment.
Original languageEnglish
Number of pages17
JournalGeroScience
Early online date8 Jan 2025
DOIs
Publication statusE-pub ahead of print - 8 Jan 2025

Keywords

  • Retinal age
  • Biological age
  • Genomewide association analysis
  • Mendelian randomization

Fingerprint

Dive into the research topics of 'Genomic determinants of biological age estimated by deep learning applied to retinal images'. Together they form a unique fingerprint.

Cite this