Abstract
A trust-region SQP-filter algorithm of the type introduced by Fletcher and Leyffer [Math. Program., 91 (2002), pp. 239-269] that decomposes the step into its normal and tangential components allows for an approximate solution of the quadratic subproblem and incorporates the safeguarding tests described in Fletcher, Leyffer, and Toint [On the Global Convergence of an SLP-Filter Algorithm, Technical Report 98/13, Department of Mathematics, University of Namur, Namur, Belgium, 1998; On the Global Convergence of a Filter-SQP Algorithm, Technical Report 00/15, Department of Mathematics, University of Namur, Namur, Belgium, 2000] is considered. It is proved that, under reasonable conditions and for every possible choice of the starting point, the sequence of iterates has at least one first-order critical accumulation point.
| Original language | English |
|---|---|
| Pages (from-to) | 635-659 |
| Number of pages | 25 |
| Journal | SIAM Journal on Optimization |
| Volume | 13 |
| Issue number | 3 |
| DOIs | |
| Publication status | Published - 2003 |
Keywords
- Convergence theory
- Filter methods
- Nonlinear optimization
- Sequential quadratic programming
ASJC Scopus subject areas
- Software
- Theoretical Computer Science