Projects per year
Abstract
The Type VII protein secretion system, found in Gram-positive bacteria, secretes small proteins, containing a conserved W-x-G amino acid sequence motif, to the growth medium. Staphylococcus aureus has a conserved Type VII secretion system, termed Ess, which is dispensable for laboratory growth but required for virulence. In this study we show that there are unexpected differences in the organization of the ess gene cluster between closely related strains of S. aureus. We further show that in laboratory growth medium different strains of S. aureus secrete the EsxA and EsxC substrate proteins at different growth points, and that the Ess system in strain Newman is inactive under these conditions. Systematic deletion analysis in S. aureus RN6390 is consistent with the EsaA, EsaB, EssA, EssB, EssC and EsxA proteins comprising core components of the secretion machinery in this strain. Finally we demonstrate that the Ess secretion machinery of two S. aureus strains, RN6390 and COL, is important for nasal colonization and virulence in the murine lung pneumonia model. Surprisingly, however, the secretion system plays no role in the virulence of strain SA113 under the same conditions.
Original language | English |
---|---|
Pages (from-to) | 928-943 |
Number of pages | 15 |
Journal | Molecular Microbiology |
Volume | 93 |
Issue number | 5 |
Early online date | 8 Jul 2014 |
DOIs | |
Publication status | Published - 30 Jul 2014 |
Fingerprint
Dive into the research topics of 'Heterogeneity in ess transcriptional organization and variable contribution of the Ess/Type VII protein secretion system to virulence across closely related Staphylocccus aureus strains'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Molecular Characterisation of Bacterial Interspecies Signalling in Polymicrobial Chronic Lung Infection: A Potential Target for Therapeutic Intervention (Senior Research Fellowship)
Palmer, T. (Investigator) & Ryan, R. (Investigator)
1/03/13 → 28/02/18
Project: Research