Projects per year
Abstract
An oxygen-tolerant respiratory [NiFe]-hydrogenase is proven to be a four-electron hydrogen/oxygen oxidoreductase, catalyzing the reaction 2 H2 + O2 = 2 H2O, equivalent to hydrogen combustion, over a sustained period without inactivating. At least 86% of the H2O produced by Escherichia coli hydrogenase-1 exposed to a mixture of 90% H2 and 10% O2 is accounted for by a direct four-electron pathway, whereas up to 14% arises from slower side reactions proceeding via superoxide and hydrogen peroxide. The direct pathway is assigned to O2 reduction at the [NiFe] active site, whereas the side reactions are an unavoidable consequence of the presence of low-potential relay centers that release electrons derived from H2 oxidation. The oxidase activity is too slow to be useful in removing O2 from the bacterial periplasm; instead, the four-electron reduction of molecular oxygen to harmless water ensures that the active site survives to catalyze sustained hydrogen oxidation.
Original language | English |
---|---|
Pages (from-to) | 6606-6611 |
Number of pages | 6 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 111 |
Issue number | 18 |
Early online date | 8 Apr 2014 |
DOIs | |
Publication status | Published - 6 May 2014 |
Fingerprint
Dive into the research topics of 'How oxygen reacts with oxygen-tolerant respiratory [NiFe]-hydrogenases'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Metal-Hydrido Intermediates in Enzymes: Atomic Level Mechanistic Insight and Technological Applications of Hydrogenases (Joint with University of Oxford)
Sargent, F. (Investigator)
Biotechnology and Biological Sciences Research Council
1/03/14 → 31/12/17
Project: Research