Projects per year
Abstract
Leishmaniasis is a neglected tropical disease; there is currently no vaccine and treatment is reliant upon a handful of drugs suffering from multiple issues including toxicity and resistance. There is a critical need for development of new fit-for-purpose therapeutics, with reduced toxicity and targeting new mechanisms to overcome resistance. One enzyme meriting investigation as a potential drug target in Leishmania is M17 leucyl-aminopeptidase (LAP). Here, we aimed to chemically validate LAP as a drug target in L. major through identification of potent and selective inhibitors. Using RapidFire mass spectrometry, the compounds DDD00057570 and DDD00097924 were identified as selective inhibitors of recombinant Leishmania major LAP activity. Both compounds inhibited in vitro growth of L. major and L. donovani intracellular amastigotes, and overexpression of LmLAP in L. major led to reduced susceptibility to DDD00057570 and DDD00097924, suggesting that these compounds specifically target LmLAP. Thermal proteome profiling revealed that these inhibitors thermally stabilized two M17 LAPs, indicating that these compounds selectively bind to enzymes of this class. Additionally, the selectivity of the inhibitors to act on LmLAP and not against the human ortholog was demonstrated, despite the high sequence similarities LAPs of this family share. Collectively, these data confirm LmLAP as a promising therapeutic target for Leishmania spp. that can be selectively inhibited by drug-like small molecules.
Original language | English |
---|---|
Pages (from-to) | 2002-2017 |
Number of pages | 16 |
Journal | ACS Infectious Diseases |
Volume | 10 |
Issue number | 6 |
Early online date | 16 May 2024 |
DOIs | |
Publication status | Published - 14 Jun 2024 |
Keywords
- drug discovery
- Leishmania
- M17 leucyl-aminopeptidase
- RapidFire-MS
- target validation
ASJC Scopus subject areas
- Infectious Diseases
Fingerprint
Dive into the research topics of 'Identification and Validation of Compounds Targeting Leishmania major Leucyl-Aminopeptidase M17'. Together they form a unique fingerprint.-
A Platform for Drug Target Deconvolution and Exploitation
Gilbert, I. (Investigator), Horn, D. (Investigator), Pawlowic, M. C. (Investigator), Wyatt, P. (Investigator) & Wyllie, S. (Investigator)
31/12/20 → 30/03/25
Project: Research
-
Wellcome Centre for Anti-Infectives Research
Cook, S. (Investigator), De Rycker, M. (Investigator), Fairlamb, A. (Investigator), Ferguson, M. (Investigator), Field, M. (Investigator), Gilbert, I. (Investigator), Gray, D. (Investigator), Horn, D. (Investigator), Pawlowic, M. C. (Investigator), Read, K. (Investigator), Wyatt, P. (Investigator) & Wyllie, S. (Investigator)
1/04/17 → 31/03/25
Project: Research
-
A Systems Approach for Understanding Cell Surface Dynamics in Trypanosomes (Investigator Award)
Field, M. (Investigator)
1/10/17 → 31/03/24
Project: Research