TY - JOUR
T1 - Identification of candidate MYB transcription factors that influence CslF6 expression in barley grain
AU - Garcia-Gimenez, Guillermo
AU - Schreiber, Miriam
AU - Dimitroff, George
AU - Little, Alan
AU - Singh, Rohan
AU - Fincher, Geoffrey B.
AU - Burton, Rachel A.
AU - Waugh, Robbie
AU - Tucker, Matthew R.
AU - Houston, Kelly
N1 - Funding Information:
This work was supported by the Australian Research Council, the BBSRC, and Rural and Environment Science and Analytical Services Division of the Scottish Government.
Publisher Copyright:
Copyright © 2022 Garcia-Gimenez, Schreiber, Dimitroff, Little, Singh, Fincher, Burton, Waugh, Tucker and Houston.
PY - 2022/9/8
Y1 - 2022/9/8
N2 - (1,3;1,4)-β-Glucan is a non-cellulosic polysaccharide required for correct barley grain fill and plant development, with industrial relevance in the brewing and the functional food sector. Barley grains contain higher levels of (1,3;1,4)-β-glucan compared to other small grain cereals and this influences their end use, having undesirable effects on brewing and distilling and beneficial effects linked to human health. HvCslF6 is the main gene contributing to (1,3;1,4)-β-glucan biosynthesis in the grain. Here, the transcriptional regulation of HvCslF6 was investigated using an in-silico analysis of transcription factor binding sites (TFBS) in its putative promoter, and functional characterization in a barley protoplast transient expression system. Based on TFBS predictions, TF classes AP2/ERF, MYB, and basic helix-loop-helix (bHLH) were over-represented within a 1,000 bp proximal HvCslF6 promoter region. Dual luciferase assays based on multiple HvCslF6 deletion constructs revealed the promoter fragment driving HvCslF6 expression. Highest HvCslF6 promoter activity was narrowed down to a 51 bp region located −331 bp to −382 bp upstream of the start codon. We combined this with TFBS predictions to identify two MYB TFs: HvMYB61 and HvMYB46/83 as putative activators of HvCslF6 expression. Gene network analyses assigned HvMYB61 to the same co-expression module as HvCslF6 and other primary cellulose synthases (HvCesA1, HvCesA2, and HvCesA6), whereas HvMYB46/83 was assigned to a different module. Based on RNA-seq expression during grain development, HvMYB61 was cloned and tested in the protoplast system. The transient over-expression of HvMYB61 in barley protoplasts suggested a positive regulatory effect on HvCslF6 expression.
AB - (1,3;1,4)-β-Glucan is a non-cellulosic polysaccharide required for correct barley grain fill and plant development, with industrial relevance in the brewing and the functional food sector. Barley grains contain higher levels of (1,3;1,4)-β-glucan compared to other small grain cereals and this influences their end use, having undesirable effects on brewing and distilling and beneficial effects linked to human health. HvCslF6 is the main gene contributing to (1,3;1,4)-β-glucan biosynthesis in the grain. Here, the transcriptional regulation of HvCslF6 was investigated using an in-silico analysis of transcription factor binding sites (TFBS) in its putative promoter, and functional characterization in a barley protoplast transient expression system. Based on TFBS predictions, TF classes AP2/ERF, MYB, and basic helix-loop-helix (bHLH) were over-represented within a 1,000 bp proximal HvCslF6 promoter region. Dual luciferase assays based on multiple HvCslF6 deletion constructs revealed the promoter fragment driving HvCslF6 expression. Highest HvCslF6 promoter activity was narrowed down to a 51 bp region located −331 bp to −382 bp upstream of the start codon. We combined this with TFBS predictions to identify two MYB TFs: HvMYB61 and HvMYB46/83 as putative activators of HvCslF6 expression. Gene network analyses assigned HvMYB61 to the same co-expression module as HvCslF6 and other primary cellulose synthases (HvCesA1, HvCesA2, and HvCesA6), whereas HvMYB46/83 was assigned to a different module. Based on RNA-seq expression during grain development, HvMYB61 was cloned and tested in the protoplast system. The transient over-expression of HvMYB61 in barley protoplasts suggested a positive regulatory effect on HvCslF6 expression.
KW - (1,3;1,4)-β-glucan
KW - barley
KW - cell wall
KW - MYB
KW - transcription factors
UR - http://www.scopus.com/inward/record.url?scp=85138539639&partnerID=8YFLogxK
U2 - 10.3389/fpls.2022.883139
DO - 10.3389/fpls.2022.883139
M3 - Article
C2 - 36160970
AN - SCOPUS:85138539639
SN - 1664-462X
VL - 13
JO - Frontiers in Plant Science
JF - Frontiers in Plant Science
M1 - 883139
ER -