Abstract
The success of optical tweezers in cellular biology1 is in part due to the wide range of forces that can be applied, from femto- to hundreds of pico-Newtons; nevertheless extending the range of applicable forces to the nanoNewton regime opens access to a new set of phenomena that currently lie beyond optical manipulation. A successful approach to overcome the conventional limits on trapping forces involves the optimization of the trapped probes. Jannasch et al.2 demonstrated that an anti-reflective shell of nanoporous titanium dioxide (aTiO2, nshell = 1.75) on a core particle made out of titanium dioxide in the anatase phase (cTiO2, ncore = 2.3) results in trappable microspheres capable to reach forces above 1 nN. Here we present how the technique can be further improved by coating the high refractive index microspheres with an additional anti-reflective shell made out of silica (SiO2). This external shell not only improves the trap stability for microspheres of different sizes, but also enables the use of functionalization techniques already established for commercial silica beads in biological experiments. We are also investigating the use of these new microspheres as probes to measure adhesion forces between intercellular adhesion molecule 1 (ICAM-1) and lymphocyte function-associated antigen 1 (LFA-1) in effector T-Cells and will present preliminary results comparing standard and high-index beads.
Original language | English |
---|---|
Title of host publication | Optical Trapping and Optical Micromanipulation XIII |
Editors | Kishan Dholakia, Gabriel C. Spalding |
Place of Publication | United States |
Publisher | SPIE-International Society for Optical Engineering |
Volume | 9922 |
ISBN (Electronic) | 9781510602366 |
ISBN (Print) | 9781510602359 |
DOIs | |
Publication status | Published - 16 Sept 2016 |
Event | SPIE Optics + Photonics 2016: Optical Trapping and Optical Micromanipulation XIII - San Diego Convention Center, San Diego, United States Duration: 28 Aug 2016 → 1 Sept 2016 http://spie.org/conferences-and-exhibitions/past-conferences-and-exhibitions/optics-and-photonics-2016 (Link to Conference details) |
Conference
Conference | SPIE Optics + Photonics 2016 |
---|---|
Country/Territory | United States |
City | San Diego |
Period | 28/08/16 → 1/09/16 |
Internet address |
|
Keywords
- Antireflection coating
- Cellular Adhesion
- Optical tweezers
- T lymphocytes
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Computer Science Applications
- Applied Mathematics
- Electrical and Electronic Engineering
Fingerprint
Dive into the research topics of 'Improved antireflection coated microspheres for biological applications of optical tweezers'. Together they form a unique fingerprint.Student theses
-
Photonic Tweezers for Optical Manipulation of Cells and Tissues
Ferro, V. (Author), McGloin, D. (Supervisor) & Weijer, K. (Supervisor), 2019Student thesis: Doctoral Thesis › Doctor of Philosophy
File