Improved performance of 3D metal printed antenna through gradual reduction in surface roughness

Deepak Shamvedi, Oliver J. McCarthy, Eoghan O'Donoghue, Paul O'Leary, Ramesh Raghavendra

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Citations (Scopus)

Abstract

The research presents the performance evaluation of a 3D metal printed antenna, as the inherent surface roughness is gradually reduced using different surface treatment techniques. In this work, surface treatment is performed on a complex shaped, 3D metal printed Sierpinski gasket antenna, fabricated from Ti-6A1-4V using a Direct Metal Laser Sintering (DMLS) technique on EOSINT M280 system. Following the initial assessment, the surface roughness has been reduced gradually, in stages, using surface treatment techniques such as wet blasting and polishing. To monitor the surface morphological changes on the antenna, a Scanning Electron Microscope (SEM) and White Light Interferometer (WLI) have been used. Finally, both the path loss (S21) and the return loss (S11) are measured, to track the RF performance changes on the 3D metal printed antenna, as a function of reducing surface roughness.

Original languageEnglish
Title of host publicationProceedings of the 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA 2017)
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages669-672
Number of pages4
Edition19
ISBN (Electronic)9781509044511
ISBN (Print)9781509044528
DOIs
Publication statusPublished - 12 Oct 2017
Event19th International Conference on Electromagnetics in Advanced Applications, ICEAA 2017 - Verona, Italy
Duration: 11 Sep 201715 Sep 2017

Conference

Conference19th International Conference on Electromagnetics in Advanced Applications, ICEAA 2017
CountryItaly
CityVerona
Period11/09/1715/09/17

    Fingerprint

Cite this

Shamvedi, D., McCarthy, O. J., O'Donoghue, E., O'Leary, P., & Raghavendra, R. (2017). Improved performance of 3D metal printed antenna through gradual reduction in surface roughness. In Proceedings of the 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA 2017) (19 ed., pp. 669-672). [8065335] Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICEAA.2017.8065335