Projects per year
Abstract
Altered tissue structure is a feature of many disease states and is usually measured by microscopic methods, limiting analysis to small areas. Means to rapidly and quantitatively measure the structure and organisation of large tissue areas would represent a major advance not just for research but also in the clinic. Here, changes in tissue organisation that result from heterozygosity in Apc, a precancerous situation, are comprehensively measured using microultrasound and three-dimensional high-resolution microscopy. Despite its normal appearance in conventionally examined cross-sections, both approaches revealed a significant increase in the variability of tissue organisation in Apc heterozygous tissue. These changes preceded the formation of aberrant crypt foci or adenoma. Measuring these premalignant changes using microultrasound provides a potential means to detect microscopically abnormal regions in large tissue samples, independent of visual examination or biopsies. Not only does this provide a powerful tool for studying tissue structure in experimental settings, the ability to detect and monitor tissue changes by microultrasound could be developed into a powerful adjunct to screening endoscopy in the clinic.
Original language | English |
---|---|
Article number | 29570 |
Pages (from-to) | 1-10 |
Number of pages | 10 |
Journal | Scientific Reports |
Volume | 6 |
DOIs | |
Publication status | Published - 13 Jul 2016 |
Fingerprint
Dive into the research topics of 'Increased variability in ApcMin/+ intestinal tissue can be measured with microultrasound'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Sonopill: Minimally Invasive Gastrointestinal Diagnosis and Therapy (Joint with University of Glasgow & Heriot Watt University)
Cochran, S. (Investigator), Corner, G. (Investigator), Cuschieri, A. (Investigator), Nathke, I. (Investigator) & Steele, B. (Investigator)
Engineering and Physical Sciences Research Council
27/05/13 → 14/12/18
Project: Research
Profiles
-
Nathke, Inke
- Molecular Cell and Developmental Biology - Professor of Epithelial Biology
Person: Academic