TY - JOUR
T1 - Infant birth weight estimation and low birth weight classification in United Arab Emirates using machine learning algorithms
AU - Khan, Wasif
AU - Zaki, Nazar
AU - Masud, Mohammad M.
AU - Ahmad, Amir
AU - Ali, Luqman
AU - Ali, Nasloon
AU - Ahmed, Luai A.
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/7/15
Y1 - 2022/7/15
N2 - Accurate prediction of a newborn’s birth weight (BW) is a crucial determinant to evaluate the newborn’s health and safety. Infants with low BW (LBW) are at a higher risk of serious short- and long-term health outcomes. Over the past decade, machine learning (ML) techniques have shown a successful breakthrough in the field of medical diagnostics. Various automated systems have been proposed that use maternal features for LBW prediction. However, each proposed system uses different maternal features for LBW classification and estimation. Therefore, this paper provides a detailed setup for BW estimation and LBW classification. Multiple subsets of features were combined to perform predictions with and without feature selection techniques. Furthermore, the synthetic minority oversampling technique was employed to oversample the minority class. The performance of 30 ML algorithms was evaluated for both infant BW estimation and LBW classification. Experiments were performed on a self-created dataset with 88 features. The dataset was obtained from 821 women from three hospitals in the United Arab Emirates. Different performance metrics, such as mean absolute error and mean absolute percent error, were used for BW estimation. Accuracy, precision, recall, F-scores, and confusion matrices were used for LBW classification. Extensive experiments performed using five-folds cross validation show that the best weight estimation was obtained using Random Forest algorithm with mean absolute error of 294.53 g while the best classification performance was obtained using Logistic Regression with SMOTE oversampling techniques that achieved accuracy, precision, recall and F1 score of 90.24%, 87.6%, 90.2% and 0.89, respectively. The results also suggest that features such as diabetes, hypertension, and gestational age, play a vital role in LBW classification.
AB - Accurate prediction of a newborn’s birth weight (BW) is a crucial determinant to evaluate the newborn’s health and safety. Infants with low BW (LBW) are at a higher risk of serious short- and long-term health outcomes. Over the past decade, machine learning (ML) techniques have shown a successful breakthrough in the field of medical diagnostics. Various automated systems have been proposed that use maternal features for LBW prediction. However, each proposed system uses different maternal features for LBW classification and estimation. Therefore, this paper provides a detailed setup for BW estimation and LBW classification. Multiple subsets of features were combined to perform predictions with and without feature selection techniques. Furthermore, the synthetic minority oversampling technique was employed to oversample the minority class. The performance of 30 ML algorithms was evaluated for both infant BW estimation and LBW classification. Experiments were performed on a self-created dataset with 88 features. The dataset was obtained from 821 women from three hospitals in the United Arab Emirates. Different performance metrics, such as mean absolute error and mean absolute percent error, were used for BW estimation. Accuracy, precision, recall, F-scores, and confusion matrices were used for LBW classification. Extensive experiments performed using five-folds cross validation show that the best weight estimation was obtained using Random Forest algorithm with mean absolute error of 294.53 g while the best classification performance was obtained using Logistic Regression with SMOTE oversampling techniques that achieved accuracy, precision, recall and F1 score of 90.24%, 87.6%, 90.2% and 0.89, respectively. The results also suggest that features such as diabetes, hypertension, and gestational age, play a vital role in LBW classification.
UR - http://www.scopus.com/inward/record.url?scp=85134229455&partnerID=8YFLogxK
U2 - 10.1038/s41598-022-14393-6
DO - 10.1038/s41598-022-14393-6
M3 - Article
C2 - 35840605
AN - SCOPUS:85134229455
SN - 2045-2322
VL - 12
JO - Scientific Reports
JF - Scientific Reports
M1 - 12110
ER -