Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization

Nicolas Dzamko, Maria Deak, Faycal Hentati, Alastair D. Reith, Alan R. Prescott, Dario R. Alessi, R. Jeremy Nichols

    Research output: Contribution to journalArticle

    225 Citations (Scopus)

    Abstract

    LRRK2 (leucine-rich repeat protein kinase 2) is mutated in a significant number of Parkinson's disease patients. Since a common mutation that replaces Gly(2019) with a serine residue enhances kinase catalytic activity, small-molecule LRRK2 inhibitors might have utility in treating Parkinson's disease. However, the effectiveness of inhibitors is difficult to assess, as no physiological substrates or downstream effectors have been identified that could be exploited to develop a robust cell-based assay. We recently established that LRRK2 bound 14-3-3 protein isoforms via its phosphorylation of Ser(910) and Ser(935). In the present study we show that treatment of Swiss 3T3 cells or lymphoblastoid cells derived from control or a Parkinson's disease patient harbouring a homozygous LRRK2(G2019S) mutation with two structurally unrelated inhibitors of LRRK2 (H-1152 or sunitinib) induced dephosphorylation of endogenous LRRK2 at Ser(910) and Ser(935), thereby disrupting 14-3-3 interaction. Our results suggest that H-1152 and sunitinib induce dephosphorylation of Ser(910) and Ser(935) by inhibiting LRRK2 kinase activity, as these compounds failed to induce significant dephosphorylation of a drug-resistant LRRK2(A2016T) mutant. Moreover, consistent with the finding that non-14-3-3-binding mutants of LRRK2 accumulated within discrete cytoplasmic pools resembling inclusion bodies, we observed that H-I 152 causes LRRK2 to accumulate within inclusion bodies. These findings indicate that dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and/or monitoring LRRK2 cytoplasmic localization can be used as an assay to assess the relative activity of LRRK2 inhibitors in vivo. These results will aid the elaboration and evaluation of LRRK2 inhibitors. They will also stimulate further research to understand how phosphorylation of Ser(910) and Ser(935) is controlled by LRRK2, and establish any relationship to development of Parkinson's disease.

    Original languageEnglish
    Pages (from-to)405-413
    Number of pages9
    JournalBiochemical Journal
    Volume430
    DOIs
    Publication statusPublished - 15 Sep 2010

    Keywords

    • cell-based assay
    • drug discovery
    • 14-3-3 protein kinase inhibitor
    • leucine-rich repeat protein kinase 2 (LRRK2)
    • Parkinson's disease
    • protein phosphorylation
    • PARKINSONS-DISEASE
    • PC12 CELLS
    • PHOSPHORYLATION
    • PENETRANCE
    • MUTATIONS
    • PROTEINS

    Cite this