Inhibition of Myostatin Signaling through Notch Activation following Acute Resistance Exercise

Mathew G. MacKenzie, David Lee Hamilton, Mark Pepin, Amy Patton, Keith Baar

    Research output: Contribution to journalArticlepeer-review

    52 Citations (Scopus)


    Myostatin is a TGFß family member and negative regulator of muscle size. Due to the complexity of the molecular pathway between myostatin mRNA/protein and changes in transcription, it has been difficult to understand whether myostatin plays a role in resistance exercise-induced skeletal muscle hypertrophy. To circumvent this problem, we determined the expression of a unique myostatin target gene, Mighty, following resistance exercise. Mighty mRNA increased by 6 h (82.9±24.21%) and remained high out to 48 h (56.5±19.67%) after resistance exercise. Further examination of the soleus, plantaris and tibialis anterior muscles showed that the change in Mighty mRNA at 6 h correlated with the increase in muscle size associated with this protocol (R = 0.9996). The increase in Mighty mRNA occurred both independent of Smad2 phosphorylation and in spite of an increase in myostatin mRNA (341.8±147.14% at 3 h). The myostatin inhibitor SKI remained unchanged. However, activated Notch, another potential inhibitor of TGFß signaling, increased immediately following resistance exercise (83±11.2%) and stayed elevated out to 6 h (78±16.6%). Electroportion of the Notch intracellular domain into the tibialis anterior resulted in an increase in Mighty mRNA (63±13.4%) that was equivalent to the canonical Notch target HES-1 (94.4±7.32%). These data suggest that acute resistance exercise decreases myostatin signaling through the activation of the TGFß inhibitor Notch resulting in a decrease in myostatin transcriptional activity that correlates well with muscle hypertrophy.
    Original languageEnglish
    Article number68743
    JournalPLoS ONE
    Issue number7
    Publication statusPublished - 2013


    Dive into the research topics of 'Inhibition of Myostatin Signaling through Notch Activation following Acute Resistance Exercise'. Together they form a unique fingerprint.

    Cite this