TY - JOUR
T1 - Insulating behaviour in room temperature rhombohedral LiNiO2 cathodes is driven by dynamic correlation
AU - Banerjee, Hrishit
AU - Aichhorn, Markus
AU - Grey, Clare P.
AU - Morris, Andrew J.
N1 - Copyright:
© 2024 The Author(s). Published by IOP Publishing Ltd.
PY - 2024/9/27
Y1 - 2024/9/27
N2 - Inspired by the experimental finding of a paramagnetic insulating state in rhombohedral LiNiO2, a lithium-ion battery cathode of great interest, we calculate the electronic, magnetic, and optical properties of LiNiO2 employing a range of single-particle and many-body methods. Within density-functional theory (DFT) using the generalized-gradient approximation (GGA), meta-GGA, and hybrid functionals, we obtain a ferromagnetic half-metallic ground state for rhombohedral LiNiO2, as has been seen previously. Self-consistent GW calculations including self-interaction corrections beyond DFT for various flavours show an electronic band gap albeit with a small quasiparticle peak at the Fermi energy. Moving beyond this, room temperature state-of-the-art dynamical mean-field theory (DMFT) calculations on rhombohedral LiNiO2 show for the first time a gap of combined Mott and charge-transfer character. The paramagnetic insulating state has a band gap of ~0.6 eV, in excellent agreement with experiments and is in sharp contrast to DFT calculations that require the presence of an extra structural symmetry breaking in the form of Jahn–Teller distortions to open a gap. We observe Ni to be in a +2 state in a d8L configuration, with a charge-transfer ligand hole in O p, and identify the ligand hole state from the DMFT DOS. We further show that whereas DFT shows the presence of an unphysical metallic Drude peak in the optical absorption spectra, DMFT calculations capture the correct form of the optical absorption spectra, and have an excellent match with the calculated band gap as well. Our results clarify that at room temperature, it is the charge transfer gap with a Mott character that causes rhombohedral LiNiO2's insulating nature; a structural distortion is not required.
AB - Inspired by the experimental finding of a paramagnetic insulating state in rhombohedral LiNiO2, a lithium-ion battery cathode of great interest, we calculate the electronic, magnetic, and optical properties of LiNiO2 employing a range of single-particle and many-body methods. Within density-functional theory (DFT) using the generalized-gradient approximation (GGA), meta-GGA, and hybrid functionals, we obtain a ferromagnetic half-metallic ground state for rhombohedral LiNiO2, as has been seen previously. Self-consistent GW calculations including self-interaction corrections beyond DFT for various flavours show an electronic band gap albeit with a small quasiparticle peak at the Fermi energy. Moving beyond this, room temperature state-of-the-art dynamical mean-field theory (DMFT) calculations on rhombohedral LiNiO2 show for the first time a gap of combined Mott and charge-transfer character. The paramagnetic insulating state has a band gap of ~0.6 eV, in excellent agreement with experiments and is in sharp contrast to DFT calculations that require the presence of an extra structural symmetry breaking in the form of Jahn–Teller distortions to open a gap. We observe Ni to be in a +2 state in a d8L configuration, with a charge-transfer ligand hole in O p, and identify the ligand hole state from the DMFT DOS. We further show that whereas DFT shows the presence of an unphysical metallic Drude peak in the optical absorption spectra, DMFT calculations capture the correct form of the optical absorption spectra, and have an excellent match with the calculated band gap as well. Our results clarify that at room temperature, it is the charge transfer gap with a Mott character that causes rhombohedral LiNiO2's insulating nature; a structural distortion is not required.
KW - strong correlations
KW - DMFT
KW - charge transfer
KW - Li ion battery
KW - cathode material
KW - ligand hole
KW - energy material
UR - http://www.scopus.com/inward/record.url?scp=85205683167&partnerID=8YFLogxK
U2 - 10.1088/2515-7655/ad7980
DO - 10.1088/2515-7655/ad7980
M3 - Article
SN - 2515-7655
VL - 6
JO - JPhys Energy
JF - JPhys Energy
M1 - 045003
ER -