Integrated light-sheet imaging and flow-based enquiry (iLIFE) system for 3D in-vivo imaging of multicellular organism

Chelur K. Rasmi, Sreedevi Padmanabhan, Kalyanee Shirlekar, Kanhirodan Rajan, Ravi Manjithaya, Varsha Singh, Partha Pratim Mondal (Lead / Corresponding author)

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

We propose and demonstrate a light-sheet-based 3D interrogation system on a microfluidic platform for screening biological specimens during flow. To achieve this, a diffraction-limited light-sheet (with a large field-of-view) is employed to optically section the specimens flowing through the microfluidic channel. This necessitates optimization of the parameters for the illumination sub-system (illumination intensity, light-sheet width, and thickness), microfluidic specimen platform (channel-width and flow-rate), and detection sub-system (camera exposure time and frame rate). Once optimized, these parameters facilitate cross-sectional imaging and 3D reconstruction of biological specimens. The proposed integrated light-sheet imaging and flow-based enquiry (iLIFE) imaging technique enables single-shot sectional imaging of a range of specimens of varying dimensions, ranging from a single cell (HeLa cell) to a multicellular organism (C. elegans). 3D reconstruction of the entire C. elegans is achieved in real-time and with an exposure time of few hundred micro-seconds. A maximum likelihood technique is developed and optimized for the iLIFE imaging system. We observed an intracellular resolution for mitochondria-labeled HeLa cells, which demonstrates the dynamic resolution of the iLIFE system. The proposed technique is a step towards achieving flow-based 3D imaging. We expect potential applications in diverse fields such as structural biology and biophysics.

Original languageEnglish
Article number243702
JournalApplied Physics Letters
Volume111
Issue number24
DOIs
Publication statusPublished - 13 Dec 2017

Keywords

  • Image processing
  • Stereoscopy
  • Diffraction optics
  • Lenses
  • Charge coupled devices
  • Microfluidic devices
  • Worms
  • Biological physics
  • Cell anatomy
  • Cell lines

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Integrated light-sheet imaging and flow-based enquiry (iLIFE) system for 3D in-vivo imaging of multicellular organism'. Together they form a unique fingerprint.

Cite this