Intermediate phases during solid to liquid transitions in long-chain n-alkanes

Stella Corsetti (Lead / Corresponding author), Thomas Rabl, David McGloin, Johannes Kiefer

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)
196 Downloads (Pure)


The solid to liquid phase transition of n-alkanes with more than ten carbon atoms is an interesting phenomenon relevant to many fields, from cosmetics to automotive. Here we report Raman spectroscopy of tetradecane, pentadecane and hexadecane as a function of temperature. In order to gain information on the structural changes that the hydrocarbons undergo during melting, and to determine the temperature and the speed at which the phase change occurs, their temperature-dependent Raman spectra are acquired. The spectra are analysed not only with respect to frequency shifts, band widths, and intensity ratio of certain bands, but also using a principal component analysis. The spectroscopic data suggest that the solid to liquid phase transition in hexadecane, differently from tetradecane and pentadecane, is almost instantaneous. Tetradecane shows a slightly faster transition than pentadecane. In addition, a rotator phase as an intermediate state between the liquid and crystalline solid phases is identified in pentadecane. Different characteristic features in the solid spectra of the hydrocarbons relate tetradecane and hexadecane to a tryclinic crystalline structure, and pentadecane to an orthorhombic structure.
Original languageEnglish
Pages (from-to)13941-13950
Number of pages9
JournalPhysical Chemistry Chemical Physics
Issue number21
Early online date11 May 2017
Publication statusPublished - Jun 2017


Dive into the research topics of 'Intermediate phases during solid to liquid transitions in long-chain n-alkanes'. Together they form a unique fingerprint.

Cite this