Investigation of the potential genotoxicity of cholesterol oxidation products in two mammalian fibroblast cell lines

J A Woods, N M O'Brien

    Research output: Contribution to journalArticle

    12 Citations (Scopus)

    Abstract

    Cholesterol oxidation products (oxysterols) are generated during the cooking and processing of foods and may be produced endogenously in tissues and in the plasma membrane. A diverse range of biological functions have been ascribed to oxysterols, including atherogenicity, carcinogenicity, and mutagenicity, and in recent years concern has been expressed over the presence of oxysterols in food products. However, it is unclear whether oxysterols are capable of inducing genotoxic damage in cell culture systems. The aim of this study was to examine seven commonly occurring oxysterols (purity > 95%) for their cytotoxicity and ability to increase the frequency of DNA strand breaks and sister chromatid exchanges (SCE) in cells in culture. Two cell lines were employed in the study: Chinese hamster ovary (CHO) and Indian Muntjac (IM) fibroblasts. The 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium bromide assay, which is a measure of intracellular reductive metabolism based on the activity of mitochondrial dehydrogenases, was used as an index of cytotoxicity. The most cytotoxic oxysterols in constantly challenged CHO or IM cells (24-h exposure) proved to be 5 alpha-cholestane-3 beta,5,6 beta-triol and 25-hydroxy-cholesterol. The genotoxic potential of the oxysterols was assessed in CHO cells using the comet assay and IM cells using the SCE assay. The comet assay measures breaks in the DNA strand, whereas the exact mechanism of SCE formation is unclear but is believed to require DNA repair where genetic material becomes exchanged between the two sister chromatids. None of the oxysterols examined in this study affected baseline levels of DNA strand breaks or SCE relative to the negative control samples. This study indicates that, under the conditions used, the oxysterols investigated were not genotoxic.
    Original languageEnglish
    Pages (from-to)192-8
    Number of pages7
    JournalNutrition and Cancer
    Volume31
    Issue number3
    DOIs
    Publication statusPublished - 1998

    Fingerprint

    Fibroblasts
    Cholesterol
    Cell Line
    Muntjacs
    Sister Chromatid Exchange
    DNA Breaks
    Cricetulus
    Ovary
    Comet Assay
    Cell Culture Techniques
    Oxysterols
    Food Handling
    Chromatids
    Cooking
    Bromides
    DNA Repair
    Oxidoreductases
    Cell Membrane
    Food
    Genes

    Cite this

    @article{20712d490f28433aaa2d944f5866e8de,
    title = "Investigation of the potential genotoxicity of cholesterol oxidation products in two mammalian fibroblast cell lines",
    abstract = "Cholesterol oxidation products (oxysterols) are generated during the cooking and processing of foods and may be produced endogenously in tissues and in the plasma membrane. A diverse range of biological functions have been ascribed to oxysterols, including atherogenicity, carcinogenicity, and mutagenicity, and in recent years concern has been expressed over the presence of oxysterols in food products. However, it is unclear whether oxysterols are capable of inducing genotoxic damage in cell culture systems. The aim of this study was to examine seven commonly occurring oxysterols (purity > 95{\%}) for their cytotoxicity and ability to increase the frequency of DNA strand breaks and sister chromatid exchanges (SCE) in cells in culture. Two cell lines were employed in the study: Chinese hamster ovary (CHO) and Indian Muntjac (IM) fibroblasts. The 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium bromide assay, which is a measure of intracellular reductive metabolism based on the activity of mitochondrial dehydrogenases, was used as an index of cytotoxicity. The most cytotoxic oxysterols in constantly challenged CHO or IM cells (24-h exposure) proved to be 5 alpha-cholestane-3 beta,5,6 beta-triol and 25-hydroxy-cholesterol. The genotoxic potential of the oxysterols was assessed in CHO cells using the comet assay and IM cells using the SCE assay. The comet assay measures breaks in the DNA strand, whereas the exact mechanism of SCE formation is unclear but is believed to require DNA repair where genetic material becomes exchanged between the two sister chromatids. None of the oxysterols examined in this study affected baseline levels of DNA strand breaks or SCE relative to the negative control samples. This study indicates that, under the conditions used, the oxysterols investigated were not genotoxic.",
    author = "Woods, {J A} and O'Brien, {N M}",
    year = "1998",
    doi = "10.1080/01635589809514702",
    language = "English",
    volume = "31",
    pages = "192--8",
    journal = "Nutrition and Cancer",
    issn = "0163-5581",
    publisher = "Taylor & Francis",
    number = "3",

    }

    Investigation of the potential genotoxicity of cholesterol oxidation products in two mammalian fibroblast cell lines. / Woods, J A; O'Brien, N M.

    In: Nutrition and Cancer, Vol. 31, No. 3, 1998, p. 192-8.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - Investigation of the potential genotoxicity of cholesterol oxidation products in two mammalian fibroblast cell lines

    AU - Woods, J A

    AU - O'Brien, N M

    PY - 1998

    Y1 - 1998

    N2 - Cholesterol oxidation products (oxysterols) are generated during the cooking and processing of foods and may be produced endogenously in tissues and in the plasma membrane. A diverse range of biological functions have been ascribed to oxysterols, including atherogenicity, carcinogenicity, and mutagenicity, and in recent years concern has been expressed over the presence of oxysterols in food products. However, it is unclear whether oxysterols are capable of inducing genotoxic damage in cell culture systems. The aim of this study was to examine seven commonly occurring oxysterols (purity > 95%) for their cytotoxicity and ability to increase the frequency of DNA strand breaks and sister chromatid exchanges (SCE) in cells in culture. Two cell lines were employed in the study: Chinese hamster ovary (CHO) and Indian Muntjac (IM) fibroblasts. The 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium bromide assay, which is a measure of intracellular reductive metabolism based on the activity of mitochondrial dehydrogenases, was used as an index of cytotoxicity. The most cytotoxic oxysterols in constantly challenged CHO or IM cells (24-h exposure) proved to be 5 alpha-cholestane-3 beta,5,6 beta-triol and 25-hydroxy-cholesterol. The genotoxic potential of the oxysterols was assessed in CHO cells using the comet assay and IM cells using the SCE assay. The comet assay measures breaks in the DNA strand, whereas the exact mechanism of SCE formation is unclear but is believed to require DNA repair where genetic material becomes exchanged between the two sister chromatids. None of the oxysterols examined in this study affected baseline levels of DNA strand breaks or SCE relative to the negative control samples. This study indicates that, under the conditions used, the oxysterols investigated were not genotoxic.

    AB - Cholesterol oxidation products (oxysterols) are generated during the cooking and processing of foods and may be produced endogenously in tissues and in the plasma membrane. A diverse range of biological functions have been ascribed to oxysterols, including atherogenicity, carcinogenicity, and mutagenicity, and in recent years concern has been expressed over the presence of oxysterols in food products. However, it is unclear whether oxysterols are capable of inducing genotoxic damage in cell culture systems. The aim of this study was to examine seven commonly occurring oxysterols (purity > 95%) for their cytotoxicity and ability to increase the frequency of DNA strand breaks and sister chromatid exchanges (SCE) in cells in culture. Two cell lines were employed in the study: Chinese hamster ovary (CHO) and Indian Muntjac (IM) fibroblasts. The 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium bromide assay, which is a measure of intracellular reductive metabolism based on the activity of mitochondrial dehydrogenases, was used as an index of cytotoxicity. The most cytotoxic oxysterols in constantly challenged CHO or IM cells (24-h exposure) proved to be 5 alpha-cholestane-3 beta,5,6 beta-triol and 25-hydroxy-cholesterol. The genotoxic potential of the oxysterols was assessed in CHO cells using the comet assay and IM cells using the SCE assay. The comet assay measures breaks in the DNA strand, whereas the exact mechanism of SCE formation is unclear but is believed to require DNA repair where genetic material becomes exchanged between the two sister chromatids. None of the oxysterols examined in this study affected baseline levels of DNA strand breaks or SCE relative to the negative control samples. This study indicates that, under the conditions used, the oxysterols investigated were not genotoxic.

    U2 - 10.1080/01635589809514702

    DO - 10.1080/01635589809514702

    M3 - Article

    VL - 31

    SP - 192

    EP - 198

    JO - Nutrition and Cancer

    JF - Nutrition and Cancer

    SN - 0163-5581

    IS - 3

    ER -