Projects per year
Abstract
Rotating mirror cameras represent a workhorse technology for high speed imaging in the MHz framing regime. The technique requires that the target image be swept across a series of juxtaposed CCD sensors, via reflection from a rapidly rotating mirror. Employing multiple sensors in this fashion can lead to spatial jitter in the resultant video file, due to component misalignments along the individual optical paths to each CCD. Here, we highlight that static and dynamic fiducials can be exploited as an effective software-borne countermeasure to jitter, suppressing the standard deviation of the corrected file relative to the raw data by up to 88.5% maximally, and 66.5% on average over the available range of framing rates. Direct comparison with industry-standard algorithms demonstrated that our fiducial-based strategy is as effective at jitter reduction, but typically also leads to an aesthetically superior final form in the post-processed video files.
Original language | English |
---|---|
Pages (from-to) | 16282-16288 |
Number of pages | 7 |
Journal | Optics Express |
Volume | 22 |
Issue number | 13 |
DOIs | |
Publication status | Published - 30 Jun 2014 |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics
Fingerprint
Dive into the research topics of 'Jitter reduction using native fiducials in rotating mirror ultra-fast microphotography'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Dermatology and Genetic Medicine (Strategic Grant) (Joint with Kings College London)
Barton, G. (Investigator), Campbell, P. (Investigator), Hickerson, R. (Investigator), Leigh, I. (Investigator), McLean, I. (Investigator) & Wyatt, P. (Investigator)
1/08/12 → 30/04/19
Project: Research