Joint modeling histology and molecular markers for cancer classification

Xiaofei Wang, Hanyu Liu, Yupei Zhang, Boyang Zhao, Hao Duan, Wanming Hu, Yonggao Mou, Stephen Price, Chao Li

Research output: Contribution to journalArticlepeer-review

11 Downloads (Pure)

Abstract

Cancers are characterized by remarkable heterogeneity and diverse prognosis. Accurate cancer classification is essential for patient stratification and clinical decision-making. Although digital pathology has been advancing cancer diagnosis and prognosis, the paradigm in cancer pathology has shifted from purely relying on histology features to incorporating molecular markers. There is an urgent need for digital pathology methods to meet the needs of the new paradigm. We introduce a novel digital pathology approach to jointly predict molecular markers and histology features and model their interactions for cancer classification. Firstly, to mitigate the challenge of cross-magnification information propagation, we propose a multi-scale disentangling module, enabling the extraction of multi-scale features from high-magnification (cellular-level) to low-magnification (tissue-level) whole slide images. Further, based on the multi-scale features, we propose an attention-based hierarchical multi-task multi-instance learning framework to simultaneously predict histology and molecular markers. Moreover, we propose a co-occurrence probability-based label correlation graph network to model the co-occurrence of molecular markers. Lastly, we design a cross-modal interaction module with the dynamic confidence constrain loss and a cross-modal gradient modulation strategy, to model the interactions of histology and molecular markers. Our experiments demonstrate that our method outperforms other state-of-the-art methods in classifying glioma, histology features and molecular markers. Our method promises to promote precise oncology with the potential to advance biomedical research and clinical applications. The code is available at github.

Original languageEnglish
Article number103505
Number of pages13
JournalMedical Image Analysis
Volume102
Early online date22 Feb 2025
DOIs
Publication statusPublished - May 2025

Keywords

  • Cancer classification
  • Digital pathology
  • Molecular pathology
  • Multi-modal learning
  • Multi-scale modeling
  • Multi-task learning

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Computer Vision and Pattern Recognition
  • Health Informatics
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Joint modeling histology and molecular markers for cancer classification'. Together they form a unique fingerprint.

Cite this