Joint Prediction of Longitudinal Development of Cortical Surfaces and White Matter Fibers from Neonatal MRI

Islem Rekik, Gang Li, Pew-Thian Yap, Geng Chen, Weili Lin, Dinggang Shen (Lead / Corresponding author)

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)
379 Downloads (Pure)

Abstract

The human brain can be modeled as multiple interrelated shapes (or a multishape), each for characterizing one aspect of the brain, such as the cortex and white matter pathways. Predicting the developing multishape is a very challenging task due to the contrasting nature of the developmental trajectories of the constituent shapes: smooth for the cortical surface and non-smooth for white matter tracts due to changes such as bifurcation. We recently addressed this problem and proposed an approach for predicting the multishape developmental spatiotemporal trajectories of infant brains based only on neonatal MRI data using a set of geometric, dynamic, and fiber-to-surface connectivity features. In this paper, we propose two key innovations to further improve the prediction of multishape evolution. First, for a more accurate cortical surface prediction, instead of simply relying on one neonatal atlas to guide the prediction of the multishape, we propose to use multiple neonatal atlases to build a spatially heterogeneous atlas using the multidirectional varifold representation. This individualizes the atlas by locally maximizing its similarity to the testing baseline cortical shape for each cortical region, thereby better representing the baseline testing cortical surface, which founds the multishape prediction process. Second, for temporally consistent fiber prediction, we propose to reliably estimate spatiotemporal connectivity features using low-rank tensor completion, thereby capturing the variability and richness of the temporal development of fibers. Experimental results conrm that the proposed variants signicantly improve the prediction performance of our original multishape prediction framework for both cortical surfaces and fiber tracts shape at 3, 6, and 9 months of age. Our pioneering model will pave the way for learning how to predict the evolution of anatomical shapes with abnormal changes. Ultimately, devising accurate shape evolution prediction models that can help quantify and predict the severity of a brain disorder as it progresses will be of great aid in
individualized treatment planning.
Original languageEnglish
Pages (from-to)411-424
Number of pages14
JournalNeuroImage
Volume152
Early online date9 Mar 2017
DOIs
Publication statusPublished - May 2017

Keywords

  • Brain development
  • Multishape prediction
  • Heterogeneous-atlas estimation
  • Low-rank tensor completion
  • Multidirectional varifold

Fingerprint

Dive into the research topics of 'Joint Prediction of Longitudinal Development of Cortical Surfaces and White Matter Fibers from Neonatal MRI'. Together they form a unique fingerprint.

Cite this