Projects per year
Abstract
How kinetochores regulate microtubule dynamics to ensure proper kinetochore-microtubule interactions is unknown. Here, we studied this during early mitosis in Saccharomyces cerevisiae. When a microtubule shrinks and its plus end reaches a kinetochore bound to its lateral surface, the microtubule end attempts to tether the kinetochore. This process often fails and, responding to this failure, microtubule rescue (conversion from shrinkage to growth) occurs, preventing kinetochore detachment from the microtubule end. This rescue is promoted by Stu2 transfer (ortholog of vertebrate XMAP215/ch-TOG) from the kinetochore to the microtubule end. Meanwhile, microtubule rescue distal to the kinetochore is also promoted by Stu2, which is transported by a kinesin-8 motor Kip3 along the microtubule from the kinetochore. Microtubule extension following rescue facilitates interaction with other widely scattered kinetochores, diminishing long delays in collecting the complete set of kinetochores by microtubules. Thus, kinetochore-dependent microtubule rescue ensures efficient and sustained kinetochore-microtubule interactions in early mitosis.
Original language | English |
---|---|
Pages (from-to) | 920-933 |
Number of pages | 14 |
Journal | Developmental Cell |
Volume | 21 |
Issue number | 5 |
DOIs | |
Publication status | Published - 15 Nov 2011 |
Keywords
- SACCHAROMYCES-CEREVISIAE
- FISSION YEAST
- MITOTIC SPINDLE
- BUDDING YEAST
- PROTEIN
- HOMOLOG
- TUBULIN
- SUPPRESSES
- TRANSPORT
- COMPONENT
Fingerprint
Dive into the research topics of 'Kinetochore-Dependent Microtubule Rescue Ensures Their Efficient and Sustained Interactions in Early Mitosis'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Aref#d: 20039. Mechanisms Ensuring Sister Kinetochore Bi-Orientation on the Mitotic Spindle (Programme Grant)
Tanaka, T. (Investigator)
1/12/08 → 31/05/14
Project: Research