TY - JOUR
T1 - Layered Assembly of Graphene Oxide Paper for Mechanical Structures
AU - Liu, Siyu
AU - Szkopek, Thomas
AU - Barthelat, Francois
AU - Cerruti, Marta
N1 - © 2022 American Chemical Society
PY - 2022/7/14
Y1 - 2022/7/14
N2 - Graphene oxide (GO) paper is an attractive material because of high stiffness and strength, light weight, and multiple functionalities. While these properties are now widely exploited in nanoinclusions or flat sheets, three-dimensional (3D) structures from GO paper are not widely studied because of a lack of suitable processing methods. In this study, we report a layered assembly method to make stiff and strong 3D GO structures with the aid of a sodium tetraborate (borax) solution. By comparing mechanical properties of assembled GO paper using water or borax solution, we found that the borax-assembled layers had the highest stiffness. To demonstrate the versatility of our assembly protocol, we then fabricated a variety of 3D structures including I-beams, cylindrical tubes, and bridge-like structures from GO paper. These GO structures were stiff and light weight, and the stiffness to mass ratio was around 2–4 times higher than other polymer samples including cellulose, fluorinated ethylene propylene, and poly(vinyl alcohol). The versatile processing method to make stiff and strong GO structures will enable new engineering applications where nonplanar GO structures are required.
AB - Graphene oxide (GO) paper is an attractive material because of high stiffness and strength, light weight, and multiple functionalities. While these properties are now widely exploited in nanoinclusions or flat sheets, three-dimensional (3D) structures from GO paper are not widely studied because of a lack of suitable processing methods. In this study, we report a layered assembly method to make stiff and strong 3D GO structures with the aid of a sodium tetraborate (borax) solution. By comparing mechanical properties of assembled GO paper using water or borax solution, we found that the borax-assembled layers had the highest stiffness. To demonstrate the versatility of our assembly protocol, we then fabricated a variety of 3D structures including I-beams, cylindrical tubes, and bridge-like structures from GO paper. These GO structures were stiff and light weight, and the stiffness to mass ratio was around 2–4 times higher than other polymer samples including cellulose, fluorinated ethylene propylene, and poly(vinyl alcohol). The versatile processing method to make stiff and strong GO structures will enable new engineering applications where nonplanar GO structures are required.
U2 - 10.1021/acs.langmuir.2c00442
DO - 10.1021/acs.langmuir.2c00442
M3 - Article
SN - 0743-7463
SP - 8757
EP - 8765
JO - Langmuir
JF - Langmuir
ER -