Projects per year
Abstract
Yeasts can exhibit various mechanisms that effect changes in metal speciation, toxicity and mobility. This research has examined the role of yeast phosphatases in lead bioprecipitation when utilizing an organic phosphorus-containing substrate as the sole phosphorus source. The formation of lead-containing biominerals after growth with organic phosphorus sources (glycerol 2-phosphate, phytic acid) was demonstrated and it was found that test yeasts were capable of mediating precipitation of lead phosphate (Pb3(PO4)2), pyromorphite (Pb5(PO4)3Cl), anglesite (PbSO4), and the lead oxides massicot and litharge (PbO), with variations in the mineral types produced between the different species. All test yeasts produced pyromorphite, and most produced anglesite. Lead oxides were only detected with Pichia acacia. Lead-containing precipitates were also formed if yeast cells were pre-grown in organic-phosphorus-containing media and subsequently exposed to Pb(NO3)2. The role of phosphatases in mediating the formation of lead-containing minerals has provided further understanding of potential fungal roles in metal and mineral biogeochemistry as well as the possible significance of these mechanisms for element biorecovery or bioremediation.
Original language | English |
---|---|
Pages (from-to) | 294-307 |
Number of pages | 14 |
Journal | Geomicrobiology Journal |
Volume | 33 |
Issue number | 3-4 |
Early online date | 25 Feb 2016 |
DOIs | |
Publication status | Published - 15 Mar 2016 |
Keywords
- Biomineralization
- bioprecipitation
- fungi
- lead
- phytase
- phytic acid
ASJC Scopus subject areas
- Earth and Planetary Sciences (miscellaneous)
- Microbiology
- General Environmental Science
- Environmental Chemistry
Fingerprint
Dive into the research topics of 'Lead bioprecipitation by yeasts utilizing organic phosphorus substrates'. Together they form a unique fingerprint.Projects
- 2 Finished
-
COG3: The Geology, Geometallurgy and Geomicrobiology of Cobalt Resources Leading to New Product Streams (joint with Natural History Museum and Universities of Manchester, Bangor, Exeter, Loughborough and Southampton and Industrial Partner)
Gadd , G. M. (Investigator)
1/05/15 → 31/03/21
Project: Research
-
Tellurium and Selenium Cycling and Supply (Joint with Universities of Leicester, Durham, Edinburgh, Cardiff, Aberdeen and Open University and Natural History Museum)
Gadd , G. M. (Investigator)
1/05/15 → 4/03/20
Project: Research